首页> 外文学位 >Theoretical and Numerical Aspects of Eulerian Polydispersity Treatments in Gas-Solid Systems
【24h】

Theoretical and Numerical Aspects of Eulerian Polydispersity Treatments in Gas-Solid Systems

机译:气固系统中欧拉多分散性处理的理论和数值方面

获取原文
获取原文并翻译 | 示例

摘要

The purpose of this research is the development of mathematical formalisms for the numerical modeling and simulation of multiphase systems with emphasis in polydisperse flows. The framework for these advancements starts with the William-Boltzmann equation which describes the evolution of joint distributions of particle properties: size, velocity, mass, enthalpy, and other scalars. The amount of statistical information that can be obtained from the direct evolution of particle distribution functions is extensive and detailed, but at a computational cost not yet suitable in usable computational fluid dynamics (CFD) codes. Alternatives to the direct evolution of particle distribution functions have been proposed and we are interested in the family of solutions involving the evolution of the statistical moments from the joint distributions. Rather than tracking every single particle characteristic from the joint distribution, transport equations for their joint moments are formulated; these equations share many of the properties of the regular transport equations formulated in the finite volume framework, making them very attractive for their implementation in current Eulerian CFD codes. The information they produce is general enough to provide the characteristic behavior of many multiphase systems to the point of improvement over the current Eulerian methodologies implemented on standard CFD modeling and simulation approaches.;Based on the advantages and limitations of the solutions of the ongoing methodologies and the degree of the information provided by them, we propose formalisms to extend their modeling capabilities focusing on the influence of the size distribution in many of the related multiphase phenomena. The first methodology evolves joint moments based on the evolution of primitive variables (size among them) and conditional moments that are approximants of the joint moments at every time step. The second methodology reconstructs completely the marginal size distribution using the concept of parcel and approximate characteristic behavior of the rest of the conditional moments in each parcel. In both approaches, the representation of size distribution plays a fundamental role and accounts for the polydisperse nature of the system. Also, the numerics of the moment transport equations are to be consistent with the theory of general hyperbolic transport equations but the formulation of the discretization schemes are based on the properties of the underlying distribution.;A final contribution is presented in the form of an appendix and it analyzes the role of maximum entropy-based methodologies on the formulation of Eulerian moment-based methods. Attempts to derive new transport equations on the framework of maximum entropy methodologies will be considered and reconstruction of distribution strategies will be presented as preliminary results that might impact future research on Eulerian moment-based methods.
机译:这项研究的目的是开发数学形式主义,用于多相系统的数值建模和仿真,重点是多分散流。这些进步的框架始于William-Boltzmann方程,该方程描述了粒子特性的联合分布的演变:尺寸,速度,质量,焓和其他标量。可以从粒子分布函数的直接演化中获得的统计信息量是广泛而详细的,但是其计算成本尚不适合可用的计算流体力学(CFD)代码。已经提出了替代粒子分布函数直接演化的方法,我们对涉及联合分布统计矩演化的解决方案系列感兴趣。与其从关节分布中追踪每个粒子的特征,不如说是它们的关节矩的传输方程。这些方程式具有在有限体积框架中公式化的正则输运方程式的许多特性,使其对于在当前的欧拉CFD代码中实施非常有吸引力。它们产生的信息足够通用,可以提供许多多相系统的特性,从而可以改进基于标准CFD建模和仿真方法实施的当前欧拉方法。基于现有方法的解决方案的优点和局限性以及根据他们提供的信息的程度,我们提出形式主义以扩展其建模能力,重点关注大小分布在许多相关的多相现象中的影响。第一种方法基于原始变量(其中的大小)和条件矩的演化来演化关节矩,条件变量是每个时间步的联合矩的近似值。第二种方法使用宗地概念和每个宗地中其余条件矩的近似特征行为,完全重建了边际尺寸分布。在这两种方法中,大小分布的表示起着基本作用,并说明了系统的多分散性。同样,矩输运方程的数值应与一般双曲输运方程的理论一致,但离散化方案的公式化是基于基础分布的性质。;最后的贡献以附录的形式给出并分析了基于最大熵的方法在欧拉矩方法的制定中的作用。将考虑尝试在最大熵方法论框架上推导新的输运方程式,并将提出分配策略的重构作为可能影响未来基于欧拉矩的方法研究的初步结果。

著录项

  • 作者

    Parra-Alvarez, John C.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Chemical engineering.;Applied mathematics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号