首页> 外文学位 >Analysis of High Switching Frequency Quasi-Z-Source Photovoltaic Inverter Using Wide Bandgap Devices
【24h】

Analysis of High Switching Frequency Quasi-Z-Source Photovoltaic Inverter Using Wide Bandgap Devices

机译:利用宽带隙器件分析高开关频率准Z源光伏逆变器

获取原文
获取原文并翻译 | 示例

摘要

Power inverters continue to play a key role in todays electrical system more than ever. Power inverters employ power semiconductors to converter direct current (DC) into alternating current (AC). The performance of the semiconductors is based on speed and efficiency. Until recently, Silicon (Si) semiconductors had been established as mature. However, the continuous optimization and improvements in the production process of Si to meet today technology requirements have pushed Si materials to their theoretical limits. In an effort to find a suitable replacement, wide bandgap devices mainly Gallium Nitride (GaN) and Silicon Carbide (SiC), have proved to be excellent candidates offering high operation temperature, high blocking voltage and high switching frequency; of which the latter makes GaN a better candidate in high switching low voltage in Distributed Generations (DG).;The single stage Quasi-Z-Source Inverter (qZSI) is also able to draw continuous and constant current from the source making ideal for PV applications in addition to allowing shoot-through states. The qZSI find best applications in medium level ranges where multiples qZS inverters can be cascaded (qZS-CMI) by combining the benefit of the qZSI, boost capabilities and continuous and constant input current, and those of the CMI, low output harmonic content and independent MPPT. When used with GaN devices operating at very high frequency, the qZS network impedance can be significantly reduced. However, the impedance network becomes asymmetric.;The asymmetric impedance network (AIN-qZSI) has several advantages such as increased power density, increases system lifetime, small size volume and size making it more attractive for module integrated converter (MIC) concepts. However, there are technical challenges. With asymmetric component, resonance is introduced in the system leading to more losses and audible noise. With small inductances, new operation states become available further increasing the system complexity. This report investigates the AIN-qZSI and present solutions to aforementioned issues.
机译:功率逆变器比以往任何时候都继续在当今的电气系统中发挥关键作用。功率逆变器采用功率半导体将直流电(DC)转换为交流电(AC)。半导体的性能取决于速度和效率。直到最近,硅(Si)半导体已经成熟。但是,为了满足当今的技术要求,对硅生产工艺的不断优化和改进将硅材料推向了理论极限。为了找到合适的替代品,宽带隙器件(主要是氮化镓(GaN)和碳化硅(SiC))被证明是具有高工作温度,高阻断电压和高开关频率的优异候选器件。其中后者使GaN在分布式发电(DG)的高开关低压中成为更好的候选者。;单级准Z源逆变器(qZSI)还能够从该源汲取连续且恒定的电流,非常适合PV应用程序除了允许直通状态外。 qZSI在中等水平范围内找到了最佳应用,在这些领域中,通过组合qZSI,升压能力和连续恒定的输入电流以及CMI的优点(低输出谐波含量和独立性),可以级联多个qZS逆变器(qZS-CMI)。 MPPT。当与以非常高的频率运行的GaN器件一起使用时,可以显着降低qZS网络阻抗。但是,阻抗网络变得不对称。;非对称阻抗网络(AIN-qZSI)具有多个优点,例如,功率密度增加,系统寿命增加,体积小巧且尺寸小,这对于模块集成转换器(MIC)的概念更具吸引力。但是,存在技术挑战。由于元件不对称,因此会在系统中引入谐振,从而导致更多损耗和可听噪声。由于电感较小,因此可以使用新的工作状态,从而进一步增加了系统的复杂性。本报告调查了AIN-qZSI并提出了上述问题的解决方案。

著录项

  • 作者

    Kayiranga, Thierry.;

  • 作者单位

    The Florida State University.;

  • 授予单位 The Florida State University.;
  • 学科 Engineering.;Energy.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 58 p.
  • 总页数 58
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:48

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号