首页> 外文学位 >High Throughput Acoustic Focusing for Separation and Interrogation of Biological Particles
【24h】

High Throughput Acoustic Focusing for Separation and Interrogation of Biological Particles

机译:高通量声聚焦技术用于生物颗粒的分离和审讯

获取原文
获取原文并翻译 | 示例

摘要

This dissertation develops acoustic standing wave systems to increase the throughput of separation and analysis platforms for biological particles. Across four discrete application spaces, this dissertation demonstrates how the integration of an acoustic standing wave for particle focusing can increase the volumetric and analytical throughput of these systems. Within this process, new instrumentation platforms are developed and fundamental characterization of the acoustic standing wave systems are explored. When applied to the analysis platform of flow cytometry, two new acoustic focusing systems are developed and applied to cytometry instrumentation. First, a high throughput acoustic focusing capillary system is developed for integration into a submersible imaging flow cytometer, the Woods Hole Imaging FlowCytobot. The development of this system explored the fundamental propagation of the wave within the capillary, developed a resonance control strategy to maintain optimal performance and, when integrated into the cytometer, demonstrated the ability to increase the volumetric throughput by an order of magnitude. Second, expanding upon the excitation of a single node system, a highly parallel flow acoustic flow cytometer was developed to increase the volumetric throughputs and analysis rates beyond the traditional limits of a singe stream cytometer. A multinode acoustic standing wave is used to precisely align 16 parallel focused streams of particles for analysis. With appropriate wide field of view optics, this parallelization of the analysis allows for high volumetric (10 mL/min) and analytical (100 k/s) analysis rates, while maintaining optical performance comparable to that of a commercial flow cytometer. This method of parallel interrogation was demonstrated to be relatively simple, cost effective, and compact; it could be impactful across a variety of application spaces that require increased throughput. Similarly, when applied to an electrical impedance sensing platform, increases in throughput and sensitivity are demonstrated with the integration of acoustic focusing. Finally, a fundamental metric for acoustic system performance, the energy efficiency factor (EEF), is demonstrated as a quantitative method for characterizing the performance of an acoustic system at a resonance condition. The EEF can be used as a resonance control strategy and for system characterization, both of which have the potential to improve the viability of low energy ultrasonic harvesting of algae for biofuel production. Across all of these application spaces, the ability of acoustic standing waves to focus particles at high throughputs is characterized and applied to new platforms that benefit from the integration of these focusing systems.
机译:本文开发了声驻波系统,以提高生物颗粒分离和分析平台的通量。在四个离散的应用空间中,本文证明了用于粒子聚焦的声驻波的集成如何增加这些系统的体积和分析通量。在此过程中,开发了新的仪器平台,并探索了声驻波系统的基本特性。当应用于流式细胞仪分析平台时,两个新的声聚焦系统被开发并应用于细胞仪仪器。首先,开发了一种高通量声聚焦毛细管系统,用于集成到潜水成像流式细胞仪Woods Hole Imaging FlowCytobot中。该系统的开发探索了毛细血管内波的基本传播,开发了一种共振控制策略以保持最佳性能,并且当整合到细胞仪中时,证明了能够将体积通量提高一个数量级。其次,在激发单节点系统的基础上,开发了一种高度并行的流声流式细胞仪,以提高体积通量和分析速率,超出了单流式细胞仪的传统极限。多节点声驻波用于精确对准16个平行聚焦的粒子流以进行分析。使用适当的宽视场光学器件,分析的这种并行化可以实现高体积(10 mL / min)和分析(100 k / s)的分析速率,同时保持与商用流式细胞仪相当的光学性能。这种并行询问的方法被证明是相对简单,经济有效和紧凑的。它对需要增加吞吐量的各种应用程序空间可能会产生影响。类似地,当应用于电阻抗感测平台时,通过声聚焦的集成可以证明吞吐量和灵敏度的提高。最后,展示了声学系统性能的基本指标,即能量效率因子(EEF),作为表征共振条件下声学系统性能的定量方法。 EEF可以用作共振控制策略和系统表征,两者都有潜力提高藻类低能超声收获生物燃料生产的可行性。在所有这些应用空间中,声驻波以高通量聚焦粒子的能力得到了表征,并应用于受益于这些聚焦系统集成的新平台。

著录项

  • 作者

    Kalb, Daniel M.;

  • 作者单位

    The University of New Mexico.;

  • 授予单位 The University of New Mexico.;
  • 学科 Chemical engineering.;Biophysics.;Biomedical engineering.;Acoustics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 205 p.
  • 总页数 205
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号