首页> 外文学位 >Experimental and Analytical Analysis of Nanostructured Materials and Devices
【24h】

Experimental and Analytical Analysis of Nanostructured Materials and Devices

机译:纳米结构材料和器件的实验和分析分析

获取原文
获取原文并翻译 | 示例

摘要

The nanoscale regime devices have attracted considerable research attention, due to the wide range of applications resulted from the size reduction of material structures and devices. To make essential progress towards developing novel devices further study of properties of nanomaterials and nanodevices is required.;Among the nanostructured materials, metal oxide semiconductor nanowires have been the focus of research studies due to their unique electrical, optical and chemical properties. Due to the large surface-to-volume ratio of metal oxide semiconductor NWs, the surface effects such as surface defect states and geometric properties can strongly modify the optical, electrical and chemical properties of materials such as In2O3 NWs. In2 O3 is a transparent n-type metal oxide semiconductor with a wide direct band gap around 3.7 eV at room temperature, that tends to cause oxygen deficiency and become conductive especially if synthesized in an oxygen-poor environment. These properties make this material a promising candidate for optoelectronic applications such as solar cells, light-emitting diodes and toxic-gas detectors. Thus, understanding the electrical transport behavior of In2O3 nanowires is critical to fabricate the reliable nanostructure devices. In the first part of this dissertation, we present a detailed study of the growth conditions of In2O3 NWs using a carbothermal reduction method. Further, we present the study of electrical conduction mechanisms of In2O3 nanowires at different temperatures, in dark and under UV illumination.;Moreover, the discussion of LC is critical in design and fabrication of high efficiency multijunction solar cells. Thus, in this thesis we propose a theoretical approach to compute the voltage increase of multijunction cells due to LC and we explore the change in recombination current density due to LC in detail. In order to study the LC effects on multijunction solar cell, first we study and investigate the LC effects on both photocurrent-matched and photocurrent-mismatched double-junction solar cell and triple-junction solar cell through the fundamental physical theories and h-spice circuit simulations. Afterward, we extend the analytical model so that we can predict the effect of LC on n series-connected multijunction solar cells. Further, we investigate the effects of LC on voltage in the voltage range between VMPP to VOC and we study the dependency of voltage on both the LC efficiency and the number of junctions in the aforementioned voltage range.;In recent years, enormous advances in nanotechnology have enabled the fabrication of nanostructures and increased the feasibility of acoustic wave confinement. As a result of their smaller dimensions, these structures portend applications at higher frequencies than those for microscale structures. Thus, the effect of downscaling from the micro-scale down to the nano-scale on the acoustic response of the nanostructure waveguides and resonators has attracted a great deal of attention. To address the technological issues in order to design high frequency nanoresonators and nanoelectromechanical systems (NEMS), it is crucial to gain a solid understanding of phonon behavior on the nanoscale objects. In the last part of this thesis, we study the confinement of resonant acoustic field for the case where energy trapping is caused by thickening the center region of the plate. We use the elastic continuum mechanics model to determine the quantized acoustic-phonon modes in an isotropic nanowaveguide. We obtain and present the acoustic-phonon amplitudes and relative frequency dispersion relations analytically for both the odd symmetry shear modes and even symmetry shear modes. Further, we quantize the acoustic-phonon modes in the non-piezoelectric nanowaveguide.;Furthermore, we discuss the limit of the quality factor and frequency (fQ) product achievable by a resonator and we present the fQ product calculation for silicon resonators working in sub-terahertz range for three different orientations. Furthermore, we present the detailed study of acoustic acoustic phonon SH modes in an unbounded hexagonal Nitride-based piezoelectric nanoresonator. We analyze the SH mode propagation in an X-cut hexagonal elastic plate to provide an analytical solution for general quantized acoustic nanoresonators. For the first time, we derive and present the quantized acoustic shear horizontal (SH) modes in a piezoelectric nanoresonator, which is of importance for modelling and understanding charge carrier-acoustic phonon interactions. Further, we derive the phonon-mode amplitude for each symmetry mode by using the energy stored in the quantized vibrational mode. We present the obtained acoustic-phonon frequency dispersion relations for odd symmetry and even symmetry SH modes. Further, we calculate and present the fQ product of nitride-based piezoelectric nanoresonator such as AlN and GaN. Eventually, we study the electrical surface perturbation in the nanoresonator which has the significant interest for sensing application and we derive and calculate the resulting resonance frequency shift caused by the electrical surface perturbation.
机译:由于材料结构和装置尺寸的减小,纳米尺度的装置得到了广泛的应用,因此引起了相当大的研究关注。为了在开发新型器件方面取得实质性进展,需要进一步研究纳米材料和纳米器件的性能。在纳米结构材料中,金属氧化物半导体纳米线由于其独特的电,光和化学性能而成为研究的重点。由于金属氧化物半导体NW的大的表面体积比,表面效应(例如表面缺陷状态和几何特性)会极大地改变材料(例如In2O3 NWs)的光学,电学和化学性质。 In 2 O 3是一种透明的n型金属氧化物半导体,在室温下具有约3.7 eV的宽直接带隙,尤其在缺氧环境中合成时,往往会导致缺氧并变得导电。这些特性使该材料成为光电子应用(如太阳能电池,发光二极管和有毒气体探测器)的有希望的候选者。因此,了解In2O3纳米线的电传输行为对于制造可靠的纳米结构器件至关重要。在本文的第一部分,我们用碳热还原法对In2O3纳米线的生长条件进行了详细的研究。此外,我们对In2O3纳米线在不同温度,黑暗和紫外线照射下的导电机理进行了研究。此外,LC的讨论对于高效多结太阳能电池的设计和制造至关重要。因此,在本文中,我们提出了一种理论方法来计算由于LC引起的多结电池的电压增加,并详细探讨了由于LC引起的复合电流密度的变化。为了研究LC对多结太阳能电池的影响,首先我们通过基本物理理论和h-spice电路研究并研究了LC对光电流匹配和光电流不匹配的双结太阳能电池和三结太阳能电池的影响。模拟。然后,我们扩展分析模型,以便可以预测LC对n个串联多结太阳能电池的影响。此外,我们研究了LC对VMPP至VOC之间的电压范围内电压的影响,并研究了电压对LC效率和上述电压范围内结数的依赖性。近年来,纳米技术取得了巨大进展已经使纳米结构的制造成为可能,并增加了声波封闭的可行性。由于其较小的尺寸,这些结构比微尺度结构具有更高的频率。因此,从微米尺度减小到纳米尺度对纳米结构波导和谐振器的声学响应的影响引起了极大的关注。为了解决技术问题以设计高频纳米谐振器和纳米机电系统(NEMS),至关重要的是要对声子在纳米级物体上的行为有扎实的了解。在本文的最后一部分,我们研究了由于板的中心区域变厚而导致能量陷获的情况下共振声场的限制。我们使用弹性连续体力学模型来确定各向同性纳米波导中的量化声子声子模式。我们获得并给出了奇对称剪切模式和偶对称剪切模式的声子振幅和相对频率色散关系的解析关系。进一步,我们量化了非压电纳米波导中的声子-声子模。 -太赫兹范围用于三个不同方向。此外,我们目前在无界六方氮化物基压电纳米谐振器中对声子声子SH模式的详细研究。我们分析了X形六边形弹性板中SH模式的传播,从而为一般的量化声纳谐振器提供了一种解析解决方案。首次,我们推导并提出了压电纳米谐振器中的水平声切水平(SH)模式,这对于建模和理解电荷载流子-声子声子相互作用非常重要。此外,我们通过使用存储在量化振动模式中的能量来推导每个对称模式的声子模式振幅。我们给出了奇对称和偶对称SH模式的声子-声子频散关系。此外,我们计算并给出了氮化铝基压电纳米谐振器(如AlN和GaN)的fQ乘积。最终,我们研究了纳米共振器中的电表面扰动,它对传感应用具有重大意义,并且我们推导并计算了由电表面扰动引起的共振频率偏移。

著录项

  • 作者

    Mazouchi, Mojgan.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Electrical engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 128 p.
  • 总页数 128
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遥感技术;
  • 关键词

  • 入库时间 2022-08-17 11:38:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号