首页> 外文学位 >Photoinitiated Bottom-Up Click Synthesis of Ion-Containing Networks as Hydroxide Exchange Membranes
【24h】

Photoinitiated Bottom-Up Click Synthesis of Ion-Containing Networks as Hydroxide Exchange Membranes

机译:光引发的自下而上的点击合成含离子的网络作为氢氧化物交换膜。

获取原文
获取原文并翻译 | 示例

摘要

Fuel cells are energy conversion devices which directly convert chemical energy into electrical energy and environmentally friendly byproducts (i.e., water) with potential versatility for transportation and portable applications. Hydroxide exchange membrane fuel cells (HEMFCs) have the potential to decrease the overall fuel cell cost through the utilization of non-precious metal catalysts such as nickel and silver as opposed to platinum which is used by the current standard technology, proton exchange membrane fuel cells (PEMFCs). However, substantial improvements in thermal and alkaline stability, hydroxide conductivity, mechanical flexibility, and processing are needed to create a competitive membrane for HEMFC applications. Regardless of the type of membrane, the high water uptake that is typically associated with increased ionic conductivity is problematic and can result in the dissolution of the membrane during fuel cell operation. Covalent crosslinking of the membrane is an approach which has been effectively applied to reduce water uptake without a significant compromise of the hydroxide conductivity.;The synthesis and processing of membrane materials is vastly simplified by using click polymerization schemes. Click chemistry is a collection of organic chemical reactions that are rapid, selective, and high yielding. One of the most versatile and facile click reactions is the thiol-ene reaction, which is the radical-mediated addition reaction between a thiol (an --SH group) and an 'ene' (an electron rich vinyl group, C=C) in the presence of a photoinitiator and light. The click attributes of the thiol-ene reaction enables potential of "bottom-up" design of ion-containing polymers via a single step photoinitiated crosslinking reaction with precise control over structure and physicochemical properties not only for fuel cell membranes but also for a range of other applications including separations, sensors, flexible electronics, and coatings. However, a fundamental understanding of the formation and properties of ion-containing thiol-ene materials and their implementation as hydroxide exchange membranes is largely absent from the current literature.;The work described herein will highlight the versatility of click reactions, primarily the thiol-ene reaction, for fabrication of ion-containing networks with tunable properties based on the rational design and synthesis of photopolymerizable ionic liquid comonomers with an emphasis on applicability for HEMFC applications. The role of ionic liquid monomer structure on the kinetics and mechanism of thiol-ene ionic network formation and the subsequent properties (i.e., ion conductive, thermomechanical, and structural) will be elucidated to establish a guided framework for click ionic material development. This framework will be directed onto the development of alkaline stable hydroxide-conductive membranes for fuel cell applications as well as the incorporation of catalytic nanoparticles into a photocrosslinkable formulation as a self-standing catalyst layer. Finally, novel approaches to membrane fabrication will be implemented to build on the foundational studies that will simultaneously enhance the ionic conductivity and mechanical properties of the ion-containing polymer materials: these approaches include the synthesis and crosslinking of photopolymerizable cationic surfactants for microphase separated membranes as well as the first "bottom-up" ion-containing polymer synthesized from the photoinitiated copper-catalyzed azide-alkyne cycloaddition (photo-CuAAC) reaction which exhibits enhanced processability and hydroxide conductivity (>50 mS/cm).
机译:燃料电池是能量转换装置,其将化学能直接转换为电能和环境友好的副产物(即水),具有潜在的多功能性,可用于运输和便携式应用。氢氧化物交换膜燃料电池(HEMFC)有潜力通过利用非贵金属催化剂(例如镍和银)来降低总体燃料电池成本,而目前的标准技术是质子交换膜燃料电池(PEMFC)。但是,需要在热和碱稳定性,氢氧化物电导率,机械柔韧性和加工性方面进行实质性改进,以制造出具有竞争力的HEMFC应用膜。无论膜的类型如何,通常与增加的离子电导率相关的高吸水率都是有问题的,并且可能导致在燃料电池运行期间膜的溶解。膜的共价交联是一种在不显着损害氢氧化物电导率的情况下有效减少水分吸收的方法。通过使用点击聚合方案,大大简化了膜材料的合成和工艺。点击化学是快速,选择性和高产率的有机化学反应的集合。最通用和最容易的点击反应之一是硫醇-烯反应,它是硫醇(-SH基团)和“烯”(电子富集的乙烯基,C = C)之间的自由基介导的加成反应。在光引发剂和光的作用下。硫醇-烯反应的点击属性通过一步光引发的交联反应,不仅可以精确控制燃料电池膜的结构和物理化学性质,而且还可以通过一系列的光引发交联反应实现“自下而上”设计含离子聚合物的潜力。其他应用包括分离,传感器,柔性电子和涂料。然而,目前文献中基本上没有对含离子的硫醇-烯材料的形成和性质及其作为氢氧化物交换膜的实现的基本理解。本文所述的工作将突出点击反应的多功能性,主要是硫醇-烯反应,基于可光聚合的离子液体共聚单体的合理设计和合成,用于制造具有可调性质的含离子网络,并着重强调了其在HEMFC应用中的适用性。将阐明离子液体单体结构对硫醇-烯离子网络形成动力学和机理以及随后的特性(即离子导电性,热机械性和结构性)的作用,从而为点击离子材料的开发建立指导框架。该框架将针对用于燃料电池应用的碱性稳定的氢氧化物导电膜的开发,以及将催化纳米颗粒掺入作为自立式催化剂层的光可交联制剂中。最后,将在基础研究的基础上实施新的膜制造方法,这些研究将同时提高含离子聚合物材料的离子电导率和机械性能:这些方法包括用于微相分离膜的光聚合阳离子表面活性剂的合成和交联。以及由光引发的铜催化的叠氮化物-炔烃环加成(photo-CuAAC)反应合成的第一种“自下而上”的含离子聚合物,该聚合物具有增强的可加工性和氢氧化物电导率(> 50 mS / cm)。

著录项

  • 作者

    Tibbits, Andrew Charles.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Chemical engineering.;Polymer chemistry.;Materials science.
  • 学位 D.Eng.
  • 年度 2017
  • 页码 268 p.
  • 总页数 268
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号