首页> 外文学位 >Sub -nanosecond dynamics in low -dimensional systems.
【24h】

Sub -nanosecond dynamics in low -dimensional systems.

机译:低维系统中的亚纳秒级动力学。

获取原文
获取原文并翻译 | 示例

摘要

The sub-nanosecond dynamics of a two-dimensional electron gas (2DEG) are studied in conditions of high fields and low temperatures. Three main regimes are identified. Firstly, the propagation of sub-nanosecond, or GHz, signals in a 2DEG waveguide at low temperature (2 K) and high magnetic field (9 T). Here we show that the 2DEG waveguide can be fully parameterised by the Hall resistance and a new 'microwave scaling constant'. Secondly, the physics of plasmons confined at the edge and in a magnetic field (9 T): edge magnetoplasmons (EMPs). Here we resolve multiple plasmon modes, where as well as the standard EMP resonances, we discover additional lower frequency modes, which could be related to transverse acoustic excitations. Thirdly, tunneling into microwave induced resistance oscillation (MIRO) states at low temperatures (50 mK). By using a novel cleaved edge overgrown (CEO) technique we are able to identify the role of photon assisted tunneling (PAT) in the formation of MIROs. These experimental results were obtained by developing new techniques combining microwaves, low temperatures, 2DEGs and high magnetic fields, which required the design and fabrication of several novel probes for these regimes.
机译:在高场和低温条件下研究了二维电子气(2DEG)的亚纳秒动力学。确定了三个主要制度。首先,在低温(2 K)和高磁场(9 T)下,2DEG波导中亚纳秒或GHz信号的传播。在这里,我们显示2DEG波导可以通过霍尔电阻和新的“微波缩放常数”来完全参数化。其次,等离子激元的物理局限在边缘和磁场(9 T)中:边缘磁等离激元(EMP)。在这里,我们解析了多个等离子体激元模式,以及标准的EMP共振,我们发现了其他低频模式,这些模式可能与横向声激发有关。第三,在低温(50 mK)下隧穿进入微波感应电阻振荡(MIRO)状态。通过使用一种新的切割边缘过长(CEO)技术,我们能够确定光子辅助隧穿(PAT)在MIRO形成中的作用。这些实验结果是通过开发结合了微波,低温,2DEG和高磁场的新技术而获得的,这些新技术需要针对这些方案设计和制造几种新型探针。

著录项

  • 作者

    Armstrong-Brown, Alistair.;

  • 作者单位

    McGill University (Canada).;

  • 授予单位 McGill University (Canada).;
  • 学科 Condensed matter physics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 166 p.
  • 总页数 166
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号