首页> 外文学位 >Atomic-level characterization of iron(001)/magnesium oxide(001)/iron(001) tunneling magnetoresistance structures and spin-polarized scanning tunneling microscopy.
【24h】

Atomic-level characterization of iron(001)/magnesium oxide(001)/iron(001) tunneling magnetoresistance structures and spin-polarized scanning tunneling microscopy.

机译:铁(001)/氧化镁(001)/铁(001)隧穿磁阻结构的原子能级表征和自旋极化扫描隧道显微镜。

获取原文
获取原文并翻译 | 示例

摘要

This thesis seeks to understand the Fe-MgO-Fe system through a series of atomic level studies of the topographic, electronic, and magnetic properties of these epitaxial films. This multilayer system is uniquely important because of its huge tunneling magnetoresistance (TMR) arising from spin coherence and strong spin filtering through the structure. MgO-based magnetic tunnel junctions have been actively investigated and are now successfully applied to commercial products such as non-volatile magnetic random access memories and read-write heads for hard disk. However, despite its popularity most work has been done on macroscopic samples and has focused on the device-level performance. Yet very little effort has been devoted towards the understanding at the atomic length scales including the effects of atomic steps and local variation in stoichiometry. The primary goal of this work is to elucidate the interplay between morphology, stoichiometry, local magnetism, and local electronic properties. To this end a multifaceted approach was used involving atomic/magnetic force microscopy (AFM/MFM), scanning tunneling microscopy (STM), scanning tunneling spectroscopy (STS), Auger electron spectroscopy, and low energy electron diffraction (LEED), which were operated in the cleanest possible conditions under an ultra-high vacuum. I linked the morphology directly to the formation of different magnetic domain configurations as a function of growth temperature and film thickness. I also correlated these atomic-level properties to the device-level performance. By investigating the topography and the surface electronic density of states with length scales in the nanometer regime, I found that the films had extremely inhomogeneous surface states. Because the structural defects such as surface steps, deep trenches and grain boundaries, as well as the existence of chemical impurities can perturb the spin-coherent tunneling, our observation of the electronic inhomogeneity can provide a direct clue for explaining the diminished TMR phenomenon on real systems compared to the theoretical expectation, which is one of longstanding problems to achieve high TMR in actual devices.;In addition to the Fe/MgO/Fe work, I also demonstrated spin polarized STM which revealed the anti-ferromagnetic spin-structure of single crystal chromium and the magnetic domains structure of permalloy film on silicon oxide.
机译:本论文旨在通过对这些外延膜的形貌,电子和磁学性质进行一系列原子级研究来理解Fe-MgO-Fe系统。该多层系统非常重要,因为它的巨大隧道磁阻(TMR)来自于自旋相干和通过结构的强自旋滤波。基于MgO的磁性隧道结已得到积极研究,现已成功应用于商业产品,例如非易失性磁性随机存取存储器和硬盘读写头。但是,尽管它很受欢迎,但是大多数工作都是在宏观样本上完成的,并且集中在设备级性能上。然而,在了解原子长度尺度上的工作还很少,包括原子步长的影响和化学计量的局部变化。这项工作的主要目的是阐明形态学,化学计量,局部磁性和局部电子性质之间的相互作用。为此,使用了涉及原子/电磁力显微镜(AFM / MFM),扫描隧道显微镜(STM),扫描隧道光谱(STS),俄歇电子光谱和低能电子衍射(LEED)的多方面方法。在最清洁的条件下,超高真空下。我将形态与生长温度和膜厚的函数直接联系到不同磁畴结构的形成。我还将这些原子级属性与设备级性能相关联。通过研究具有纳米尺度长度尺度的状态的形貌和表面电子密度,我发现这些膜具有极其不均匀的表面状态。由于表面台阶,深沟槽和晶界等结构缺陷以及化学杂质的存在会干扰自旋相干隧穿,因此我们对电子不均匀性的观察可以提供直接线索来解释真实情况下TMR现象的减少。与理论上的预期相比,这是在实际器件中实现高TMR的长期问题之一;除了Fe / MgO / Fe的工作外,我还演示了自旋极化STM,揭示了单分子的反铁磁自旋结构晶体铬和氧化硅上坡莫合金膜的磁畴结构。

著录项

  • 作者

    Lee, Jookyung.;

  • 作者单位

    University of Maryland, College Park.;

  • 授予单位 University of Maryland, College Park.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:36:51

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号