首页> 外文学位 >Can Crypto Chip to Secure Data Transmitted Through CAN FD Bus by Using AES-128 & SHA-1 with a Symmetric Key
【24h】

Can Crypto Chip to Secure Data Transmitted Through CAN FD Bus by Using AES-128 & SHA-1 with a Symmetric Key

机译:可以使用带有对称密钥的AES-128和SHA-1加密芯片来保护通过CAN FD总线传输的数据

获取原文
获取原文并翻译 | 示例

摘要

Robert Robert Bosch GmBH proposed in 2012 a new version of communication protocol named as Controller Area Network with Flexible Data-Rate (CANFD), that supports data frames up to 64 bytes compared to 8 bytes of CAN. With limited data frame size of CAN message, and it is impossible to encrypt and secure. With this new feature of CAN FD, I propose a hardware design---CAN crypto FPGA chip to secure data transmitted through CAN FD bus by using AES-128 and SHA-1 algorithms with a symmetric key. Hardware will protect confidentiality of cryptographic keys better than software. AES-128 algorithm provides confidentiality of CAN message and SHA-1 algorithm with a symmetric key (HMAC) provides integrity and authenticity of CAN message. The design has been modeled and verified by using Verilog HDL---a hardware description language, and implemented successfully into Xilinx and Altera FPGA chips by using simulation tool ISE (Xilinx) and Quartus (Altera). Verification are done by applying direct test bench with National Institute of Standards and Technology (NIST) test vectors for AES-128, SHA-1, CAN crypto encryption and decryption cores. The performance of the design implemented into Xilinx FPGA chip (Virtex5 XC5VLX50T) were 187 MHz maximum clock frequency & 203 Mbps throughput for the encryption core, and 182 MHz maximum clock frequency & 198 Mbps throughput for the decryption core. The performance of the design implemented into Altera FPGA Chip (EP4CE115F29C7) were 90.09 MHz maximum clock frequency & 98 Mbps throughput for the encryption core, and 89.13 MHz maximum clock frequency & 97 Mbps throughput for the decryption core. In addition, an ASIC chip of the design has been built successfully by using Synopsys tools, and its performance was 100 MHz maximum clock frequency for both the encryption and decryption core. In conclusion, the performance of CAN crypto encryption and decryption cores in both FPGA chips and ASIC chip show that CAN Crypto design is suitable to be embedded into ECUs for securing data transmitted through CAN FD bus.;I have enhanced CAN Crypto design by adding 64 bits anti-replay counter to prevent Replay attacks, and using dynamic Cipher Key and Symmetric Key to strengthen robustness of secret of those keys. Moreover, the proposed design is also applicable to secure CAN bus; this makes it more promising to secure hybrid network-an integration of CANFD and CAN buses. The design of enhanced CAN Crypto has been modeled and verified successfully by using Verilog HDL, and implemented successfully into Altera FPGA chip by using Altera Quartus simulation tool. The performance of the enhanced design implemented into Altera FPGA Chip (EP4CE115F29C7) were 87.83 MHz maximum clock frequency & 95 Mbps throughput for the encryption core, and 86.84 MHz maximum clock frequency & 94 Mbps throughput for the decryption core. The performance of enhanced CAN Crypto encryption and decryption cores shows that enhanced CAN Crypto design is suitable to be embedded into ECUs for securing data transmitted through CAN FD bus in-vehicle networks.;In conclusion, by implementing the CAN Crypto design inside each ECU, we are not only providing authenticity of CAN message but also integrity and confidentiality of the message. This solution will secure CAN networks better than current academic and industrial solutions, which are only providing authenticity of CAN message.
机译:Robert Robert Bosch GmBH在2012年提出了一种新版本的通信协议,称为具有灵活数据速率的控制器区域网络(CANFD),与8字节的CAN相比,该协议最多支持64字节的数据帧。由于CAN消息的数据帧大小有限,因此无法进行加密和保护。借助CAN FD的这一新功能,我提出了一种硬件设计,即CAN加密FPGA芯片,以通过使用带有对称密钥的AES-128和SHA-1算法来保护通过CAN FD总线传输的数据。硬件将比软件更好地保护加密密钥的机密性。 AES-128算法提供CAN消息的机密性,而SHA-1算法与对称密钥(HMAC)提供CAN消息的完整性和真实性。该设计已使用硬件描述语言Verilog HDL进行了建模和验证,并通过使用仿真工具ISE(Xilinx)和Quartus(Altera)成功地实现到Xilinx和Altera FPGA芯片中。验证是通过将直接测试台与用于AES-128,SHA-1,CAN加密和解密核心的美国国家标准技术研究院(NIST)测试向量一起使用来完成的。在Xilinx FPGA芯片(Virtex5 XC5VLX50T)中实现的设计性能,加密内核的最大时钟频率为187 MHz,吞吐量为203 Mbps,解密内核的最大性能为182 MHz,最大时钟频率,即198 Mbps。在Altera FPGA芯片(EP4CE115F29C7)中实现的设计性能,加密内核的最大时钟频率为90.09 MHz,吞吐量为98 Mbps;解密内核的性能为89.13 MHz的最大时钟频率,即97 Mbps。此外,已使用Synopsys工具成功构建了该设计的ASIC芯片,其性能为加密和解密内核均达到100 MHz的最大时钟频率。总之,FPGA芯片和ASIC芯片中CAN加密和解密核心的性能表明,CAN Crypto设计适合嵌入到ECU中,以保护通过CAN FD总线传输的数据。位防重放计数器可防止重放攻击,并使用动态密码密钥和对称密钥来增强这些密钥的秘密鲁棒性。而且,所提出的设计也适用于安全的CAN总线。这使得保护混合网络(CANFD和CAN总线的集成)变得更有希望。使用Verilog HDL成功地对增强型CAN加密的设计进行了建模和验证,并使用Altera Quartus仿真工具将其成功实现到Altera FPGA芯片中。实施到Altera FPGA芯片(EP4CE115F29C7)中的增强设计的性能是:对于加密内核,最大时钟频率为87.83 MHz,吞吐量为95 Mbps;对于解密内核,最大时钟频率为86.84 MHz,吞吐量为94 Mbps。增强型CAN Crypto加密和解密核心的性能表明,增强型CAN Crypto设计适合嵌入到ECU中,以保护通过CAN FD总线在车载网络中传输的数据。总之,通过在每个ECU内部实现CAN Crypto设计,我们不仅提供CAN消息的真实性,而且还提供消息的完整性和机密性。与目前仅提供CAN消息真实性的学术和工业解决方案相比,该解决方案将更好地保护CAN网络。

著录项

  • 作者

    Doan, Tri P.;

  • 作者单位

    Oakland University.;

  • 授予单位 Oakland University.;
  • 学科 Computer engineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 300 p.
  • 总页数 300
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号