首页> 外文学位 >An improved immersed boundary method for computation of turbulent flows with heat transfer.
【24h】

An improved immersed boundary method for computation of turbulent flows with heat transfer.

机译:一种改进的浸入边界方法,用于计算带有热传递的湍流。

获取原文
获取原文并翻译 | 示例

摘要

The immersed boundary (IB) method is a technique to enforce boundary conditions on surfaces not aligned with the mesh in a numerical simulation. This method has been used as a practical approach to model flow problems involving very complex geometries or moving bodies. Our objective is to assess the accuracy and efficiency of the IB method in simulations of turbulent flows, where the flow dynamics in the near-wall region is fundamental to correctly predict the overall flow. The first part of this work focuses on the development of a simulation tool based on the IB method that can correctly predict the wall temperature and pressure fluctuations in turbulent flows. In the second part, we illustrate the application of the method to a multi-material heat transfer problem where convective heat transfer of the fluid and conductive heat transfer of the solid are handled simultaneously.; This work achieves sufficient accuracy at the immersed boundary and overcomes deficiencies in previous IB methods by augmenting the formulation with additional constraints--a compatibility constraint relating the interpolated velocity boundary condition with mass conservation and a decoupling constraint for the pressure. We derived an IB method with a revised boundary interpolation and a strictly mass conserving scheme, which does not show pressure oscillations near the immersed boundary. Although accurate, the complexity of this method prompted the development of another variant--the immersed boundary-approximated domain method (IB-ADM). This approach satisfies the pressure decoupling constraint with an inexpensive computational overhead. The IB-ADM correctly predicts the near-wall velocity, pressure and scalar fields in several example problems. The IB-ADM is shown to successfully predict the flow around a very thin solid object for which incorrect results were obtained with previous IB methods. The IB-ADM has been successfully validated through computation of the wall-pressure space-time correlation in DNS of a turbulent channel flow. When applied to a turbulent flow around an airfoil, the computed flow statistics--the mean/RMS flow field and power spectra of the wall pressure--are in good agreement with a previous LES and experiment.; In order to establish the viability of the IB method as an efficient tool for LES/DNS of conjugate heat transfer applications, the problem of a heated cylinder in a channel with heating from below is considered. Here, the fluid-solid interface is constructed as a collection of disjoint faces of control volumes associated to different material zones. Coupling conditions for the material zones have been developed such that continuity and conservation of the scalar flux are satisfied by a second-order interpolation. The local mesh refinement technique is crucial to accommodate the large difference in length scales in the present application (i.e., small heated cylinder in a large channel). In the region upstream of the transition to turbulence, numerical predictions show a strong sensitivity to the mesh resolution and inlet condition. Predictions of the local Nusselt number show good agreement with the experimental data. The effect of the Boussinesq approximation on this problem was also investigated. Comparison with the variable density formulation suggests that, in spite of a small thermal expansion coefficient of water, the variable density formulation in a transitional flow with mixed convection is preferable, since it does not involve the uncertainty in the material properties required in the Boussinesq approximation.
机译:浸入边界(IB)方法是一种在数值模拟中对不与网格对齐的表面施加边界条件的技术。该方法已用作模拟涉及非常复杂的几何形状或运动物体的流动问题的实用方法。我们的目标是评估湍流模拟中IB方法的准确性和效率,其中近壁区域的流动动力学是正确预测整体流量的基础。这项工作的第一部分着重于基于IB方法的仿真工具的开发,该工具可以正确预测湍流中的壁温和压力波动。在第二部分中,我们说明了该方法在多材料传热问题中的应用,该问题同时处理了流体的对流传热和固体的传导传热。这项工作在沉浸边界上获得了足够的精度,并通过增加额外的约束条件(克服了内插速度边界条件与质量守恒相关的相容性约束以及压力的解耦约束),克服了先前IB方法的不足。我们推导了一种具有修正边界插值和严格质量守恒方案的IB方法,该方法在浸没边界附近未显示出压力振荡。尽管准确,但此方法的复杂性促使开发了另一种方法-浸入式边界近似域方法(IB-ADM)。该方法以廉价的计算开销来满足压力解耦约束。 IB-ADM在几个示例问题中正确预测了近壁速度,压力和标量场。 IB-ADM可以成功地预测非常薄的固体物体周围的流动,而使用先前的IB方法却无法获得正确的结果。 IB-ADM已通过计算湍流通道DNS中壁压时空相关性而成功验证。当应用于翼型周围的湍流时,计算出的流量统计数据-壁面压力的平均/ RMS流场和功率谱-与先前的LES和实验非常吻合。为了确立IB方法作为共轭传热应用的LES / DNS的有效工具的可行性,考虑了从下方加热的通道中加热缸的问题。在此,流固界面构造为与不同材料区域相关联的控制体积的不相交面的集合。已经开发出用于材料区域的耦合条件,以便通过二阶插值满足标量通量的连续性和守恒性。在本申请中,局部网格细化技术对于适应长度尺度上的较大差异(即,大通道中的小加热圆柱体)至关重要。在向湍流过渡的上游区域,数值预测显示出对网格分辨率和入口条件的强烈敏感性。本地Nusselt数的预测与实验数据显示出很好的一致性。还研究了Boussinesq逼近对此问题的影响。与可变密度公式的比较表明,尽管水的热膨胀系数较小,但在混合对流过渡流中的可变密度公式还是可取的,因为它不涉及Boussinesq近似中所需材料性能的不确定性。

著录项

  • 作者

    Kang, Seongwon.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Mechanical.; Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;等离子体物理学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号