首页> 外文学位 >Behavior of proton exchange membrane fuel cells at sub-freezing temperatures.
【24h】

Behavior of proton exchange membrane fuel cells at sub-freezing temperatures.

机译:质子交换膜燃料电池在低于冰点的温度下的行为。

获取原文
获取原文并翻译 | 示例

摘要

Vehicle applications require that proton exchange membrane (PEM) fuel cells, which electrochemically produce water, must survive and reliably start at sub-freezing temperatures. This thesis investigates the performance and behavior of PEM fuel cells operating at such temperatures. Since they constitute the majority of voltage loss at non-frozen conditions, this work begins with fundamental studies of the oxygen reduction reaction (ORR) kinetics and proton conductivity. In carefully designed experiments, ORR kinetics are measured in-situ from -40°C to 55°C. Measured kinetic parameters are consistent with values reported at non-frozen conditions, and activation energies are found constant across the measured temperature range, indicating ORR mechanism (within electrode ionomer) is not influenced by ice, beyond the additional reactant transport resistance it introduces. Membrane conductivity, measured with volume-less 4-point DC conductivity cell from 30°C to -50°C, is found to decrease with temperature, by nearly an order of magnitude by -20°C at practically relevant water contents, and exhibits a change in activation energy near 0°C in well hydrated membranes. The state-of-water in Nafion is investigated using differential scanning calorimetry (DSC) to provide mechanistic understanding of conductivity behavior. Below 0°C, some fraction of water absorbed in the membrane exists as liquid while the remaining fraction as ice. At progressively lower sub-freezing temperatures, a smaller non-frozen water fraction, responsible for proton conduction, exists in the membrane. Successful cold starting of PEM fuel cells requires self-heating due to voltage losses to raise the temperature near 0°C before electrode ice formation blocks reactant access. The maximum operating time before 0°C is achieved is proportional to the amount of product water uptake in the membrane and ice formation capacity in the electrode, which were measured by isothermal, galvanostatic experiments. Verified by cryo-SEM imaging and predicted by a numerical model, at low currents the membrane and electrode completely fill and ice formation occurs uniformly across electrode thickness, while at higher currents, electrode voids only filled to 40% with ice formation within electrode beginning near the membrane, proceeding outwards. Finally, incorporating the findings of this work, a transient model is developed to predict voltage and temperature during PEM fuel cell start-up from sub-freezing temperatures.
机译:车辆应用要求以电化学方式产生水的质子交换膜(PEM)燃料电池必须能够生存并可靠地在低于冰点的温度下启动。本文研究了在这种温度下运行的PEM燃料电池的性能和性能。由于它们构成了非冻结条件下电压损失的主要部分,因此这项工作从对氧还原反应(ORR)动力学和质子传导率的基础研究开始。在精心设计的实验中,ORR动力学是在-40°C至55°C范围内原位测量的。测得的动力学参数与在非冻结条件下报告的值一致,并且发现活化能在测得的温度范围内是恒定的,这表明ORR机理(在电极离聚物内)不受冰的影响,超出了它引入的其他反应物传输阻力。发现在无水容量的4点DC电导池中,从30°C到-50°C测得的膜电导率会随温度降低,在实际相关的水含量下会降低-20°C约一个数量级,并表现出在水合良好的膜中,活化能在0°C附近发生变化。使用差示扫描量热法(DSC)对Nafion中的水状态进行了研究,以提供对电导率行为的机械理解。在0℃以下,膜中吸收的一部分水以液体形式存在,而其余部分以冰形式存在。在逐渐降低的亚冰点温度下,膜中存在负责质子传导的较小的非冷冻水部分。 PEM燃料电池的成功冷启动由于电压损失而需要自加热,以在电极冰形成阻塞反应物进入之前将温度升至0°C附近。在达到0°C之前的最大工作时间与通过等温,恒电流实验测得的膜中产品水的吸收量和电极中的冰形成能力成正比。通过低温SEM成像验证并通过数值模型进行预测,在低电流下,膜和电极完全充满,并且在整个电极厚度上均匀地形成冰,而在高电流下,电极空隙仅填充到40%,而电极内的冰开始接近膜,向外进行。最后,结合这项工作的发现,开发了一个瞬态模型,以根据次冻结温度预测PEM燃料电池启动期间的电压和温度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号