首页> 外文学位 >A generalized discontinuous Galerkin (GDG) method and its applications.
【24h】

A generalized discontinuous Galerkin (GDG) method and its applications.

机译:广义不连续伽勒金(GDG)方法及其应用。

获取原文
获取原文并翻译 | 示例

摘要

In paraxial approximations for wave propagations in optical waveguides, the time harmonic Maxwell's equations are approximated by Schrodinger equations where the propagation direction is identified as the time axis. Due to this mismatch of refractive indices in waveguides, the electromagnetic fields are discontinuous solutions to Schrodinger equations, a property not shared by the probability wave functions of quantum mechanics. In order to handle the discontinuities, we propose the idea of using generalized distribution variables in generalized discontinuous Galerkin (GDG) method. The key idea is that, instead of using interior penalty terms in standard discontinuous Galerkin method, we propose to use delta functions as source terms to incorporate interface (jump) conditions into the given PDE.; The advantage of using the delta functions to enforce the interface conditions are three fold: (1) It can handle jump relationships of a general form. (2) The discontinuous Galerkin projection of the delta functions is natural due to the weak form definition of the distribution variables, with derived evenly split delta function and its related integration by parts formula. (3) The GDG approach can be easily extended to multi-dimensional problems and other types of PDEs of higher orders with nonsmooth solutions.; Numerical schemes for both 1-D and 2-D are formulated in details. The consistence of the GDG scheme is proved for 1-D case. And we also showed the stability by calculating the eigenvalues of the discretization matrix. Numerical results, with various types of jump conditions, demonstrate the GDG method's ability to handle general interface conditions and its high order accuracy.; As one of the GDG's application, second part of the dissertation proposes a new vectorial generalized discontinuous Galerkin beam propagation method (GDG-BPM) for wave propagations in inhomogeneous optical waveguides, where we combine the GDG method with the popular beam propagation method (BPM) by applying the GDG method on three coupled Schrodinger equations reduced from vector Helmholtz equation by paraxial approximation.; The resulting GDG-BPM takes on four formulations for either electric or magnetic field. Numerical results, with different shapes of interface and amount of jumps, show the GDG-BPM's unique feature of handling interface jump conditions and its flexibility and high order accuracy in modeling wave propagations in inhomogeneous optical fibers.
机译:在光波在光波导中的近轴近似中,时谐麦克斯韦方程由Schrodinger方程近似,其中传播方向被标识为时间轴。由于波导中折射率的这种不匹配,电磁场是薛定inger方程的不连续解,量子力学的概率波函数没有共享这一特性。为了处理不连续性,我们提出在广义不连续Galerkin(GDG)方法中使用广义分布变量的想法。关键思想是,我们建议使用增量函数作为源项,以将接口(跳转)条件合并到给定的PDE中,而不是在标准的不连续Galerkin方法中使用内部惩罚项。使用delta函数来强制接口条件的优点有三方面:(1)它可以处理一般形式的跳转关系。 (2)由于分布变量的形式定义较弱,因此三角函数的不连续Galerkin投影是自然的,它具有均匀分解的三角函数及其相关的零件公式积分。 (3)GDG方法可以很容易地扩展到多维问题和具有非光滑解的其他高阶PDE类型。详细介绍了一维和二维的数值方案。对于一维情况,证明了GDG方案的一致性。并且我们还通过计算离散化矩阵的特征值来证明稳定性。具有各种类型的跳跃条件的数值结果证明了GDG方法处理一般界面条件的能力及其高阶精度。作为GDG的应用之一,论文的第二部分提出了一种新的矢量广义不连续Galerkin光束传播方法(GDG-BPM),用于非均匀光波导中的波传播,我们将GDG方法与流行的光束传播方法(BPM)结合在一起通过对近轴矢量Helmholtz方程简化的三个耦合Schrodinger方程应用GDG方法。所得的GDG-BPM具有针对电场或磁场的四种配方。具有不同界面形状和跳跃量的数值结果表明,GDG-BPM能够处理界面跳跃条件,并具有出色的灵活性和高阶精度,可用于建模非均质光纤中的波传播。

著录项

  • 作者

    Fan, Kai.;

  • 作者单位

    The University of North Carolina at Charlotte.$bApplied Mathematics (PhD).;

  • 授予单位 The University of North Carolina at Charlotte.$bApplied Mathematics (PhD).;
  • 学科 Mathematics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 72 p.
  • 总页数 72
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 数学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号