首页> 外文学位 >Mercury emissions from coal-fired power plants: A local or a global pollutant?
【24h】

Mercury emissions from coal-fired power plants: A local or a global pollutant?

机译:燃煤电厂的汞排放:是本地污染物还是全球污染物?

获取原文
获取原文并翻译 | 示例

摘要

This dissertation tests whether or not mercury emissions from electric power plants are not a significant contributor to mercury measurements in rainfall and argues that the current United States (U.S.) Environmental Protection Agency (EPA) proposed regulatory scheme for controlling mercury from electric power plants, the Clean Air Mercury Rule (CAMR), is an effective regulatory mechanism by using a number of ordinary least square (OLS) and spatial regression models. Two dependent variables are tested, mercury concentration (the average mercury concentration measured in rainfall in nanograms per liter, ng/L) and mercury deposition (the total annual mercury falling at each measurement site in nanograms per square meter, ng/m2), with mercury concentration determined to be the more valid dependent variable. The source for the mercury concentration and deposition data is the Mercury Deposition Network (MDN), part of the National Atmospheric Deposition Program (NADP), with the data obtained for between 46 and 75 sites operating from 2001 through 2005.;Independent variables include: (1) emissions to the air from power plants, (2) emissions to the air from other industrial sites, (3) emissions to the land from the mining industry, (4) population as a proxy variable for vehicle emissions, (5) burned area from wildfires, (6) precipitation and (7) dummy variables for year and EPA region. Data for independent variables 1, 2, and 3 were obtained from the EPA's Toxic Release Inventory (TRI) program. Population for each county in the U.S. was obtained from the Census Bureau, and wildfire data was obtained from the U.S. Department of Agriculture satellite based fire mapping system, Moderate Resolution Imaging Spectroradiometer (MODIS). Microsoft Access was utilized to summarize and total the independent variables within a variable radius of the MDN measurement sites, ranging from 25 to 500 miles. The software tool GeoDa 0.95i, made available by the University of Illinois, was used to perform the OLS, spatial lag, and spatial error regressions.;After changing the functional form of the equation to a log-linear model (using the natural log form of the dependent variable and the linear forms of the independent variables) to deal with heteroskedasticity, the results indicate a strong spatial component to the model. Other than precipitation, the most significant predictor of mercury concentration is fire area burned between 50 and 75 miles of the MDN measurement site (z = 3.08, p0.01). Other positive and significant predictors in this model include all other industry emissions between 25 and 50 miles (z = 2.71, p0.01), fire area burned between 75 and 100 miles (z = 2.64, p0.01), population within 25 miles (z = 1.91, p0.10), utility emissions between 25 and 50 miles (z = 1.88, p0.10), and population between 50 and 75 miles (z = 1.71, p0.10). Two of the independent variables are significant and have negative coefficients. These are utility emissions between 50 and 75 miles (z = -2.49, p0.05), and fire area burned between 25 and 50 miles (z = -2.12, p0.05).;Several conclusions are drawn from this research, including: (1) that utility mercury emissions are marginally significant as a predictor of mercury concentration in rainfall, but only at distances under 50 miles from the measurement point, (2) that there is no known best method for controlling mercury emissions from all utility plants at high levels of collection efficiency (90 percent) although research is ongoing, and (3) that the cap-and-trade provisions of CAMR would be unlikely to result in the creation of new or the exacerbation of existing mercury hotspots. Given that the U.S. District of Columbia Circuit Court of Appeals set aside the CAMR rule in early 2008, two policy prescriptions are provided. One approach makes an economic argument for revising the cap-and-trade provisions of CAMR to include transfer coefficients. The second suggestion involves a less complicated and more politically acceptable change to the trading rules for mercury.
机译:本论文测试了发电厂中的汞排放量是否对降雨中汞含量的测量没有重大贡献,并认为当前的美国(美国)环境保护署(EPA)提出了控制发电厂中汞含量的监管方案。清洁空气汞规则(CAMR)是通过使用许多普通最小二乘(OLS)和空间回归模型建立的有效监管机制。测试了两个因变量,分别是汞浓度(降雨中测得的平均汞浓度,以纳升/升为单位,纳克/升)和汞沉积量(每个测量点处的总年度汞沉降量,以纳克/平方米为单位,纳克/平方米),汞浓度被确定为更有效的因变量。汞浓度和沉积数据的来源是汞沉积网络(MDN),它是国家大气沉积计划(NADP)的一部分,从2001年至2005年获得了46至75个站点的数据;独立变量包括: (1)发电厂向大气的排放,(2)其他工业场所向大气的排放,(3)采矿业向土地的排放,(4)人口作为车辆排放的替代变量,(5)野火烧毁的面积,(6)降水和(7)年份和EPA地区的虚拟变量。自变量1、2和3的数据是从EPA的有毒物质排放清单(TRI)程序获得的。美国每个县的人口都是从人口普查局获得的,野火数据是从美国农业部基于卫星的火灾测绘系统中分辨率成像光谱仪(MODIS)获得的。利用Microsoft Access来汇总和汇总MDN测量站点范围从25到500英里的可变半径内的自变量。由伊利诺伊大学提供的软件工具GeoDa 0.95i用于执行OLS,空间滞后和空间误差回归;在将方程的函数形式更改为对数线性模型后(使用自然对数)变量的线性形式和自变量的线性形式)来处理异方差,结果表明该模型具有很强的空间成分。除降水外,最显着的汞浓度预测指标是在MDN测量地点50到75英里之间燃烧的火区(z = 3.08,p <0.01)。此模型中的其他积极且重要的预测指标包括25至50英里之间的所有其他行业排放(z = 2.71,p <0.01),75至100英里之间燃烧的火灾面积(z = 2.64,p <0.01),25英里内的人口(z = 1.91,p <0.10),公用事业排放量在25到50英里之间(z = 1.88,p <0.10),人口在50到75英里之间(z = 1.71,p <0.10)。其中两个自变量是有效的,并且具有负系数。这些是在50至75英里之间的公用事业排放量(z = -2.49,p <0.05),在25至50英里之间燃烧的火场面积(z = -2.12,p <0.05)。该研究得出了一些结论,包括:(1)公用事业的汞排放在预测降雨中的汞浓度方面仅占很小的比例,但仅在距测量点50英里以内的距离处,(2)没有已知的控制所有公用事业工厂的汞排放的最佳方法尽管研究仍在进行中,但仍处于较高的收集效率水平(90%),并且(3)CAMR的总量管制和贸易规定不太可能导致新的或加剧现有的汞热点。鉴于美国哥伦比亚特区巡回上诉法院在2008年初废除了CAMR规则,因此提供了两个政策规定。一种方法是对CAMR的总量管制和贸易规定进行修改以包括转移系数的经济学观点。第二个建议涉及对汞交易规则的较简单和更政治上可接受的更改。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号