首页> 外文学位 >Active water management for proton exchange membrane fuel cells using integrated wicks and electroosmotic pumps.
【24h】

Active water management for proton exchange membrane fuel cells using integrated wicks and electroosmotic pumps.

机译:使用集成的灯芯和电渗泵对质子交换膜燃料电池进行主动水管理。

获取原文
获取原文并翻译 | 示例

摘要

Fuel cell vehicles offer the potential for increased energy security and significant reductions in oil consumption and greenhouse gas emissions. However, realizing economically feasible and reliable fuel cells remains a significant technical challenge. One important technological barrier is effective water management for proton exchange membrane (PEM) fuel cells. Proper water management ensures necessary membrane hydration while preventing flooding. Common water management strategies include using flow channels with a high pressure gradient and operation with high air stoichiometric ratios. Unfortunately, high flow rates and pressures create a large air delivery parasitic load, complicates the balance of plant (i.e. supporting systems), and reduce system efficiency.;We have developed an active water management system that decouples water removal from oxidant delivery to enable the use of low air flow rates and parallel channels with low hydraulic resistance. The system uses a porous carbon flow field as an integrated wick which passively redistributes water within the fuel cell. We hydraulically couple the wick to a small, external electroosmotic (EO) pump which actively removes excess water from the channels and gas diffusion layer (GDL). EO pumps are well suited for fuel cells because they are compact, have no moving parts, and their flow rate scales with area.;We investigate the unique characteristics of an EO pump coupled with an unsaturated wick using a multiphase, capillary flow model. The results of the model demonstrate the capacity of the wick to prevent flooding by redistributing water. Moreover, the model reveals the significant influence of the wick's capillary pressure on EO pump flow rate. We also present an engineering model that characterizes the scaling of EO pumps and wicks with PEM fuel cells. This model depicts the favorable scaling of EO pumps with fuel cells and suggests that this system can be scaled to fuel cells of all sizes while maintaining parastic loads below 1%.;Our experimental studies investigate water management with both simple, always on and active EO pump control strategies. We resolve the relationship between the water removal rate and the prevention of flooding, as well as the timescale for recovery from flooding. As part of this work, we identify two significant passive water management mechanisms introduced by the wick. First, with adequately high pressure gradients in the air channels, the wick supports sufficient water flow to prevent flooding. Second, the wick can be used to passively humidify dry gases. However, we demonstrate that the EO pump is necessary to enable the robust operation of parallel channel cathode architectures under all operating conditions. The EO pump can properly manage water while consuming less than 0.5% of the fuel cell power. At an efficient, low air stoichiometric ratio of 1.3, the EO pump increases the maximum power density of the fuel cell by 50% over a conventional graphite fuel cell plate.
机译:燃料电池汽车具有提高能源安全性以及显着减少石油消耗和温室气体排放的潜力。然而,实现经济上可行和可靠的燃料电池仍然是重大的技术挑战。一个重要的技术障碍是对质子交换膜(PEM)燃料电池进行有效的水管理。适当的水管理可确保必要的膜水合作用,同时防止洪水泛滥。常见的水管理策略包括使用具有高压梯度的流道和以高化学计量比运行。不幸的是,高流量和高压力会产生大量的空气输送寄生负载,使工厂(即辅助系统)的平衡复杂化,并降低系统效率。使用低空气流量和具有低水力阻力的平行通道。该系统使用多孔碳流场作为集成灯芯,可在燃料电池内被动地重新分配水。我们将油芯液压耦合到小型外部电渗(EO)泵,该泵主动从通道和气体扩散层(GDL)中去除多余的水。 EO泵非常紧凑,没有活动部件,并且流量随面积成比例变化,因此非常适合燃料电池。;我们使用多相毛细管流动模型研究了带有不饱和油芯的EO泵的独特特性。该模型的结果证明了灯芯通过重新分配水来防止洪水的能力。此外,该模型揭示了灯芯的毛细管压力对EO泵流量的重大影响。我们还提出了一个工程模型,该模型表征了带有PEM燃料电池的EO泵和油芯的缩放比例。该模型描绘了带有燃料电池的EO泵的良好缩放比例,并建议该系统可以缩放至各种尺寸的燃料电池,同时将寄生负载保持在1%以下。我们的实验研究研究了简单,始终开启和主动EO的水管理泵控制策略。我们解决了除水率与防洪之间的关系,以及从防洪中恢复的时间表。作为这项工作的一部分,我们确定了灯芯引入的两种重要的被动水管理机制。首先,在空气通道中具有足够高的压力梯度的情况下,油芯可支撑足够的水流以防止溢流。其次,灯芯可用于被动加湿干燥气体。但是,我们证明了EO泵对于在所有工作条件下都能使并行通道阴极体系结构稳定运行是必不可少的。 EO泵可以适当地处理水,而消耗的燃料电池功率不到0.5%。与传统的石墨燃料电池板相比,在有效的低空气化学计量比1.3下,EO泵将燃料电池的最大功率密度提高了50%。

著录项

  • 作者

    Litster, Shawn Edward.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 170 p.
  • 总页数 170
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 机械、仪表工业;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号