首页> 外文学位 >Fatigue and environmental behavior of long fiber thermoplastic (LFT) composites.
【24h】

Fatigue and environmental behavior of long fiber thermoplastic (LFT) composites.

机译:长纤维热塑性(LFT)复合材料的疲劳和环境行为。

获取原文
获取原文并翻译 | 示例

摘要

In the present work we have characterized the mechanical behavior of long fiber thermoplastic (LFT) composites (21% E-glass fiber/polypropylene) under different conditions. We start by comparing the elastic modulus of LFT predicted by a microstructure-based approach called Object Oriented Finite (OOF) element method, and compare the result with prediction from various models commonly used in the literature and the experimental value. The predictions from the models used currently in the literature did not agree well with the experimental value due to the assumptions inherent in the models. The prediction by OOF was the closest to the experimental value because of the microstructure based approach which takes into account the fiber distribution and orientation during the finite element calculation. This was followed by characterization of fatigue behavior of LFT. Samples tested along longitudinal direction showed a higher fatigue life than the transverse samples because of the preferred orientation of the fibers along the longitudinal direction developed during the processing of LFT by extrusion-compression molding process. Fatigue life decreased with increase in frequency. Hysteretic energy loss and temperature rise were measured; they depended on the stress amplitude as well as the cyclic frequency. LFT composite showed a lower temperature rise compared to neat PP because LFT has higher thermal conductivity than neat PP and thus faster heat dissipation to the surroundings occur. The hysteretic heating also led to decrease in the modulus of LFT as a function of number of cycles. The last part of the work was to study the effect of ultraviolet (UV) exposure on the microstructure and mechanical properties of LFT. Microscopic observations revealed that the damage due to UV was confined only to the surface region in the form of surface cracking and exposure of fibers to the surface in the case of LFT. FTIR and nanoindentation results showed that there was a large increase in the crystallinity and local modulus of the surface layer due to UV exposure. The change in crystallinity and modulus of the surface layer occurs by chemicrystallization wherein the broken, smaller chains due to UV radiation rearrange into more crystalline form. This increase in crystallinity causes increase in the modulus of surface layer and results in cracking of the surface because tensile residual stresses are generated in the surface layer due to the change in crystallinity. The overall modulus of the LFT, however, decreased with increasing UV exposure time due to the formation of surface cracks.
机译:在当前的工作中,我们已经表征了长纤维热塑性塑料(LFT)复合材料(21%的电子玻璃纤维/聚丙烯)在不同条件下的机械性能。我们首先比较通过基于微结构的方法(称为面向对象的有限元(OOF)元素方法)预测的LFT的弹性模量,然后将结果与文献中常用的各种模型的预测结果和实验值进行比较。由于模型固有的假设,目前在文献中使用的模型的预测与实验值不太吻合。由于基于微结构的方法在有限元计算过程中考虑了纤维分布和方向,因此OOF的预测最接近实验值。其次是表征LFT的疲劳行为。沿纵向方向测试的样品显示出比横向样品更高的疲劳寿命,这是因为在通过挤压-压缩成型工艺加工LFT的过程中,纤维沿纵向方向的优选取向更好。疲劳寿命随着频率的增加而减少。测量了磁滞能量损失和温升;它们取决于应力幅度以及循环频率。与纯聚丙烯相比,LFT复合材料显示出较低的温升,因为LFT比纯聚丙烯具有更高的导热率,因此可以更快地散发到周围环境。磁滞加热还导致LFT模量随循环次数的降低而降低。工作的最后一部分是研究紫外线(L)暴露对LFT的微观结构和力学性能的影响。显微镜观察表明,在LFT的情况下,由于紫外线造成的损害仅以表面破裂和纤维暴露于表面的形式限制在表面区域。 FTIR和纳米压痕结果表明,由于暴露于紫外线,表面层的结晶度和局部模量大大增加。表面层的结晶度和模量的变化是通过化学结晶发生的,其中由于紫外线辐射而断裂的较小链重新排列成更多的结晶形式。结晶度的这种增加导致表面层的模量的增加并且导致表面破裂,这是因为由于结晶度的改变在表面层中产生了拉伸残余应力。但是,由于表面裂纹的形成,LFT的总模量随着紫外线暴露时间的增加而降低。

著录项

  • 作者

    Goel, Ashutosh.;

  • 作者单位

    The University of Alabama at Birmingham.;

  • 授予单位 The University of Alabama at Birmingham.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 134 p.
  • 总页数 134
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号