首页> 外文学位 >In vivo Visualization of Neural Pathways in the Rat Spinal Cord Using Viral Tracing
【24h】

In vivo Visualization of Neural Pathways in the Rat Spinal Cord Using Viral Tracing

机译:使用病毒示踪的大鼠脊髓神经通路的体内可视化。

获取原文
获取原文并翻译 | 示例

摘要

Much of our understanding of the fascinating complexity of neuronal circuits comes from anatomical tracing studies that use dyes or fluorescent markers to highlight pathways that run through the brain and spinal cord. Viral vectors have been utilized by many previous groups as tools to highlight pathways or deliver transgenes to neuronal populations to stimulate growth after injury. In a series of studies, we explore anterograde and retrograde tracing with viral vectors to trace spinal pathways and explore their contribution to behavior in a rodent model. In a separate study, we explore the effect of stimulating intrinsic growth programs on regrowth of corticospinal tract (CST) axons after contusive injury.;In the first study, we use self-complimentary adeno associated viral (scAAV) vectors to trace long descending tracts in the spinal cord. We demonstrate clear and bright labeling of cortico-, rubro- and reticulospinal pathways without the need for IH, and show that scAAV vectors transduce more efficiently than single stranded AAV (ssAAV) in neurons of both injured and uninjured animals. This study demonstrates the usefulness of these tracers in highlighting pathways descending from the brain.;Retrograde tracing is also a key facet of neuroanatomical studies involving long distance projection neurons. In the next study, we highlight a lentivirus that permits highly efficient retrograde transport (HiRet) from synaptic terminals within the cervical and lumbar enlargements of the spinal cord. By injecting HiRet, we can clearly identify supraspinal and propriospinal circuits innervating MN pools relating to forelimb and hindlimb function. We observed robust labeling of propriospinal neurons, including high fidelity details of dendritic arbors and axon terminals seldom seen with chemical tracers. In addition, we examine changes in interneuronal circuits occurring after a thoracic contusion, highlighting populations that potentially contribute to spontaneous behavioral recovery in this lesion model.;In a related study, we use a modified version of HiRet as part of a multi-vector system that synaptically silences neurons to explore the contribution of the rubrospinal tract (RST) and CST to forelimb motor behavior in an intact rat. This system employs Tetanus toxin at the neuronal synapse to prevent release of neurotransmitter via cleavage of vesicle docking proteins, effectively preventing the propagation of action potentials in those neurons. We find that shutdown of the RST has no effect on gross forelimb motor function in the intact state, and that shutdown of a small population of CST neurons in the FMC has a modest effect on grip strength. These studies demonstrate that the HiRet lentivirus is a unique tool for examining neuronal circuitry and its contribution to function.;In the final study, we explore stimulation of the Phosphoinositide 3-kinase/Rac-alpha serine/threonine Protein Kinase (PI3K/AKT) growth pathway by antagonizing phosphatase and tensin homolog (PTEN), a major inhibitor, to encourage growth of CST axons after a contusive injury. We use systemic infusions of four distinct PTEN antagonist peptides (PAPs) targeted at different sites of the PTEN protein. We find robust axonal growth and sprouting caudal to a contusion in a subset of animals infused with PAPs targeted to the PTEN enzymatic pocket, including typical morphology of growing axons. Serotonergic fiber growth was unaffected by peptide infusion and did not correlate with CST fiber density. Though some variability was seen in the amount of growth within our animal groups, we find these PTEN antagonist peptides a promising and clinically relevant tool to encourage CST sprouting, and a potentially useful addition to therapies using combinatory strategies to enhance growth.;These studies demonstrate that viral tracing is a powerful tool for mapping spinal pathways and elucidating their ability to reform spinal circuits after injury. Viral vectors can be used in both anterograde and retrograde tracing studies to highlight intricacies of neuronal cell bodies, axons and dendritic arbors with a high degree of fidelity. In the injured state, these tools can help identify pathways that contribute to spontaneous recovery of function by highlighting those that reform circuits past an injury site. In the uninjured state, these vectors can contain neuronal silencing methods that help define the contribution of specific pathways to behavior.
机译:我们对神经回路引人入胜的复杂性的大多数理解来自解剖学追踪研究,该研究使用染料或荧光标记物突出了贯穿大脑和脊髓的途径。以前的许多小组已将病毒载体用作突出途径或将转基因传递至神经元群体以刺激损伤后生长的工具。在一系列研究中,我们使用病毒载体探索顺行和逆行追踪,以追踪脊髓途径,并探讨它们在啮齿动物模型中对行为的贡献。在另一项研究中,我们探讨了刺激内在生长程序对挫伤性损伤后皮质脊髓束(CST)轴突再生的影响。在第一项研究中,我们使用自互补腺相关病毒(scAAV)载体追踪长下降道在脊髓中。我们展示了清晰,明亮的皮质,红细胞和网状脊髓途径的标签,而无需IH,并显示在受伤和未受伤动物的神经元中,scAAV载体比单链AAV(ssAAV)的转导效率更高。这项研究证明了这些示踪剂在突显从大脑下降的途径中的有用性。逆行追踪也是涉及长距离投射神经元的神经解剖学研究的一个重要方面。在下一个研究中,我们着重介绍了一种慢病毒,该病毒可从脊髓的颈椎和腰椎内的突触末端高效逆行转运(HiRet)。通过注射HiRet,我们可以清楚地识别神经支配与前肢和后肢功能相关的MN池的脊髓上和脊柱前回路。我们观察到了脊椎前神经元的强健标记,包括很少用化学示踪剂观察到的高保真度的树突状树突和轴突末端。此外,我们研究了胸挫伤后神经元间回路的变化,突出了可能对该病灶模型中自发行为恢复做出贡献的人群;在相关研究中,我们将HiRet的改良版用作多载体系统的一部分突触使神经元沉默,以探索胭脂神经束(RST)和CST对完整大鼠前肢运动行为的贡献。该系统在神经元突触处使用破伤风毒素,以防止通过裂解囊泡对接蛋白而释放神经递质,从而有效地阻止了动作电位在这些神经元中的传播。我们发现RST的关闭对完整状态的前肢总运动功能没有影响,FMC中一小部分CST神经元的关闭对握力有适度的影响。这些研究表明,HiRet慢病毒是检查神经元回路及其对功能的作用的独特工具。;在最终研究中,我们探索了磷酸肌醇3-激酶/Rac-α丝氨酸/苏氨酸蛋白激酶(PI3K / AKT)的刺激作用。通过拮抗磷酸酶和张力蛋白同源物(PTEN)(一种主要抑制剂)的生长途径来鼓励挫伤性损伤后CST轴突的生长。我们使用针对四种不同PTEN蛋白位点的四种不同PTEN拮抗剂肽(PAP)的全身性输注。我们在注入了针对PTEN酶口袋的PAP的动物子集中发现了强劲的轴突生长和尾ion发芽至挫伤,包括典型的生长轴突形态。血清素能纤维的生长不受肽输注的影响,并且与CST纤维密度无关。尽管我们的动物组中生长量存在一定差异,但我们发现这些PTEN拮抗剂肽是鼓励CST萌发的有前途且与临床相关的工具,并且是使用联合策略增强生长的治疗方法的潜在有用补充;这些研究表明病毒示踪是绘制脊髓途径并阐明其在损伤后重建脊髓回路的能力的强大工具。病毒载体可用于顺行和逆行追踪研究,以高度保真地突出神经元细胞体,轴突和树突状树突的复杂性。在受伤状态下,这些工具可以通过突出显示在受伤部位经过的回路进行重塑,从而帮助确定有助于自发恢复功能的途径。在未受伤的状态下,这些载体可以包含神经元沉默方法,以帮助定义特定途径对行为的贡献。

著录项

  • 作者

    Keefe, Kathleen M.;

  • 作者单位

    Temple University.;

  • 授予单位 Temple University.;
  • 学科 Neurosciences.;Health sciences.;Cellular biology.
  • 学位 Ph.D.
  • 年度 2018
  • 页码 186 p.
  • 总页数 186
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号