首页> 外文学位 >Polaritonic quantum phase transition from a superfluid to Mott-insulator state and applications.
【24h】

Polaritonic quantum phase transition from a superfluid to Mott-insulator state and applications.

机译:从超流体到莫特-绝缘子状态的极化量子相变及其应用。

获取原文
获取原文并翻译 | 示例

摘要

The original idea of quantum computation and simulation proposed by R. Feynman in early 80's has been pursuit continuously by researchers in different fields in the past few decades. However, limited by the technology advance, the manipulation of microscopic objects such as single atoms, ions and excitons only becomes possible until very recently. In particular, semiconductor technology offers a unique platform for studying entities whose underlying physics are governed solely by quantum mechanics, which opens the possibility to construct on-chip quantum systems artificially with high degree of controllability.;In this thesis, we focus on the theoretical possibility to implement a quantum simulator of complex many-body physics based on solid-state devices. The specific model that we are interested in is the Bose-Hubbard model, which describes the strongly-interacting bosons in a periodic lattice potential. The quantum phase transition from a superfluid to Mott-insulator state in such a system was theoretically predicted in 1989 by M. P. A. Fisher et al. using mean field theory and experimentally confirmed in 2002 by M. Greiner et al. using ultracold atoms in an optical lattice. These ground-breaking results motivate researchers to build up quantum emulators for studying certain many-body phenomenon, e.g., the origin of High-Tc superconductors, which traditionally cannot be reliably handled by theoretical means.;The outline of this thesis is as the following. We first examine the basic concepts of Bose-Hubbard model in chapter 1, and describe two methods in chapter 2 and 3 regarding how to creative an in-plane superlattice for excitons in a semiconductor quantum well using piezoelectric acoustic waves. In chapter 4, instead of constructing excitonic superlattice, we introduce photonic superlattice by cascading optical microcavities based on photonic crystal and distributed-bragg-reflectors. By strongly coupling to impurity-bound excitons and quantum well excitons, we show the existence of characteristic superfluid to Mott-insulator quantum phase transition in these polaritonic systems. In chapter 5, we propose a massive parallel generation of nonclassical photons via polaritonic quantum phase transition, and show its deterministic and fault-tolerant nature compared to the existing proposals. Finally, we conclude this work by discussing the possible new research directions.
机译:费曼(R. Feynman)在80年代初提出的量子计算和模拟的原始思想在过去的几十年中一直被不同领域的研究人员不断追求。然而,受技术进步的限制,直到最近才可能对诸如单个原子,离子和激子之类的微观物体进行操纵。特别是,半导体技术为研究仅由量子力学控制其基础物理的实体提供了一个独特的平台,这为人工构建具有高度可控性的片上量子系统提供了可能性。实现基于固态设备的复杂多体物理量子模拟器的可能性。我们感兴趣的特定模型是Bose-Hubbard模型,它描述了周期性晶格势中的强相互作用玻色子。 1989年,M。P. A. Fisher等人从理论上预测了这种系统中从超流体状态到Mott-绝缘子状态的量子相变。使用平均场理论,并在2002年由M. Greiner等人实验证实。在光学晶格中使用超冷原子。这些开创性的结果激励研究人员建立量子仿真器,以研究某些多体现象,例如,High-Tc超导体的起源,而传统上是无法通过理论手段可靠地对其进行处理的。本文的概述如下: 。我们首先在第1章中研究Bose-Hubbard模型的基本概念,并在第2章和第3章中介绍有关如何使用压电声波在半导体量子阱中为激子创建面内超晶格的两种方法。在第四章中,我们不是构建激子超晶格,而是通过基于光子晶体和分布式布拉格反射器的光学微腔级联来介绍光子超晶格。通过与杂质结合的激子和量子阱激子的强耦合,我们证明了在这些极化子系统中存在特征性的超流体到莫特-绝缘子量子相变的存在。在第5章中,我们提出了通过极化子量子相变大规模并行生成非经典光子的方法,并与现有技术相比,证明了其确定性和容错性。最后,我们通过讨论可能的新研究方向来结束这项工作。

著录项

  • 作者

    Na, Yunchung Neil.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Physics Condensed Matter.;Physics Optics.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 64 p.
  • 总页数 64
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号