首页> 外文学位 >Measurements and modeling of turbulent transport in the HSX stellarator.
【24h】

Measurements and modeling of turbulent transport in the HSX stellarator.

机译:HSX恒星器中湍流传输的测量和建模。

获取原文
获取原文并翻译 | 示例

摘要

Measurements of electron cyclotron resonance heated (ECRH) plasmas in HSX demonstrate a reduction in experimental electron thermal diffusivity in the core, consistent with that predicted by neoclassical theory due to quasihelical symmetry. However, the transport across most of the minor radius is anomalous. Because of the low electron collisionality, the trapped electron mode (TEM) instability is predicted to be the dominant turbulent transport mechanism. To assess this possibility, the Weiland model has been used to predict the linear stability and quasi-linear transport of HSX plasmas. This axisymmetric model, evaluated using the local curvature and trapped particle fraction in the outboard, low field, bad curvature region of HSX, is capable of reproducing the experimental transport within an order of magnitude. Localized edge turbulence measurements using Langmuir probes demonstrate the existence of fluctuation amplitudes consistent with mixing length arguments. The scale lengths, density-potential cross phases, and inferred growth rates are also in reasonable quantitative agreement with linear TEM predictions. The TEM growth rates, calculated more accurately for 3D HSX equilibria using the gyrokinetic code GS2, exhibit scaling with collisionality, density and temperature gradients, and trapped particle fraction, similar to that in tokamaks. The Weiland model, with local HSX geometry approximations, is shown to agree within 30% of the GS2 calculations for experimental parameters in HSX. One-dimensional transport simulations have been performed using the Weiland model in addition to neoclassical transport calculations. These simulations predict the energy confinement times within 10% of measured values. The predicted density and electron temperature profiles are in good agreement with measurements outside the inner 30% of the minor radius. The predictions inside this core region are sensitive to the radial electric field through both the neoclassical and anomalous transport models.
机译:HSX中电子回旋共振加热(ECRH)等离子体的测量表明,核中实验电子热扩散率降低,这与准古典对称性导致的新古典理论所预测的一致。但是,跨大部分小半径的传输是异常的。由于低的电子碰撞性,预计陷阱电子模式(TEM)的不稳定性是主要的湍流传输机制。为了评估这种可能性,Weiland模型已用于预测HSX等离子体的线性稳定性和准线性传输。该轴对称模型使用HSX外侧,低场,曲率差的区域中的局部曲率和捕获的颗粒分数进行评估,能够在一个数量级内再现实验传输。使用Langmuir探针进行的局部边缘湍流测量表明存在与混合长度参数一致的波动幅度。鳞片的长度,密度-潜在的交叉相和推断的生长速率也与线性TEM预测值在合理的定量上一致。使用陀螺动力学代码GS2更精确地计算3D HSX平衡的TEM增长率,显示出随碰撞性,密度和温度梯度以及所捕获的颗粒分数而变化的比例,类似于托卡马克。带有局部HSX几何近似值的Weiland模型显示在HSX中的实验参数的GS2计算值的30%之内。除了新古典运输计算之外,还使用Weiland模型进行了一维运输模拟。这些模拟预测能量限制时间在测量值的10%以内。预测的密度和电子温度曲线与小半径内部30%之外的测量值非常吻合。通过新古典和异常输运模型,该核心区域内部的预测对径向电场敏感。

著录项

  • 作者

    Guttenfelder, Walter Allen.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Physics Fluid and Plasma.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 191 p.
  • 总页数 191
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号