首页> 外文学位 >Sequencing Medicago truncatula chromosome 4, expression profiling and genomic organization of NBS-LRR genes.
【24h】

Sequencing Medicago truncatula chromosome 4, expression profiling and genomic organization of NBS-LRR genes.

机译:截短苜蓿4号染色体的测序,NBS-LRR基因的表达谱和基因组组织。

获取原文
获取原文并翻译 | 示例

摘要

Our laboratory, as a member of the International Consortium was sequencing chromosomes 1, 4, 6 and 8 of the model legume, Medicago truncatula. Overall 75% of the euchromatic region is sequenced and encodes approximately 53,000 protein coding genes.;I focused my research on sequencing chromosome 4 and studying the genomic organization and expression profiles of Nucleotide Binding Sites and Leucine Rich Repeat (NBS-LRR) genes encoded on them. Chromosome 4 is one of the largest chromosomes and is distinctly divided in to a gene rich euchromatic region and a repeat rich heterochromatin. Other chromosomes have high synteny blocks with both monocots and dicots except chromosome 4 and 6 that have lower synteny with monocots. NBS-LRR genes are the largest superfamily of plant resistance genes and I have identified 447 NBS-LRR genes in the overall genome. Chromosomes 4 and 6 encodes most of the TNL genes while a large portion of the CNL type genes are mapped to chromosome 3, 5 and 8. In Medicago, NBS-LRR genes have a high degree of clustering, mainly due to local/tandem duplication, with some evidence of ectopic translocation, fusion and/or truncation that leads to an unusual high number of domain rearrangements suggesting that they evolved by duplication, although their occurrence on two chromosomes that they likely occurred after polyploidy. In addition, the expression profile of the NBS-LRR reveals that since these genes are expressed in various tissues as well as during plant symbiosis, abiotic stress and different developmental stages, that they likely are involved in functions other than just plant defense.;This study has helped in understanding the organization and the evolution of NBS-LRR genes and their expression pattern via in-silico methods. With the help of this analysis and an in-depth study of the NBS-LRR genes at molecular level, will enable us to understand their mechanism in performing the various functions.
机译:作为国际财团的成员,我们的实验室正在对豆科植物苜蓿苜蓿模型的1、4、6和8号染色体进行测序。总体上常染色体75%的区域被测序并编码约53,000个蛋白质编码基因。;我将研究重点放在4号染色体的测序上,研究了核苷酸结合位点和亮氨酸富集重复序列(NBS-LRR)基因的基因组组织和表达谱。他们。染色体4是最大的染色体之一,并且明显分为一个基因丰富的常染色体区域和一个重复基因丰富的异染色质。其他染色体与单子叶植物和双子叶植物都具有较高的同胞区阻滞,除了4号和6号染色体与单子叶植物具有较低的同胞度。 NBS-LRR基因是植物抗性基因的最大超家族,我已经在整个基因组中鉴定出447个NBS-LRR基因。染色体4和6编码大多数TNL基因,而大部分CNL型基因位于3、5和8号染色体。在Medicago中,NBS-LRR基因具有高度聚类,主要是由于局部/串​​联重复,有一些异位易位,融合和/或截断的证据导致异常高的结构域重排,这表明它们是通过重复进化而来的,尽管它们出现在两条染色体上,很可能是在多倍性之后发生的。此外,NBS-LRR的表达谱表明,由于这些基因在各种组织中以及在植物共生,非生物胁迫和不同发育阶段中表达,因此它们可能不仅参与植物防御,而且还参与其他功能。这项研究有助于通过计算机方法了解NBS-LRR基因的组织和进化及其表达模式。借助这一分析和在分子水平上对NBS-LRR基因的深入研究,将使我们能够了解它们在执行各种功能中的机制。

著录项

  • 作者

    Deshpande, Shweta.;

  • 作者单位

    The University of Oklahoma.;

  • 授予单位 The University of Oklahoma.;
  • 学科 Chemistry Biochemistry.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 116 p.
  • 总页数 116
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号