首页> 外文学位 >Mitochondrial dysfunction leads to NOX activation: A novel mechanism to maintain high glycolysis in cancer cells.
【24h】

Mitochondrial dysfunction leads to NOX activation: A novel mechanism to maintain high glycolysis in cancer cells.

机译:线粒体功能障碍导致NOX活化:一种维持癌细胞高糖酵解的新机制。

获取原文
获取原文并翻译 | 示例

摘要

Increased glycolysis and oxidative stress are common features of cancer cells. These metabolic alterations are associated with mitochondrial dysfunction and can be caused by mitochondrial DNA (mtDNA) mutations, oncogenic signals, loss of tumor suppressor, and tumor tissue hypoxia. It is well established that mitochondria play central roles in energy metabolism, maintenance of redox balance, and regulation of apoptosis. However, the biochemical and molecular mechanisms that maintain high glycolysis in cancer cells (the Warburg effect) with mitochondrial dysfunction and oxidative stress remain to be determined. The major goals of this study were to establish a unique experimental system in which the mitochondrial respiratory function can be regulated as desired, and to use this system to investigate the mechanistic link between mitochondrial dysfunction and the Warburg effect along with oxidative stress in cancer cells. To achieve these goals, I have established a tetracycline-inducible system in which a dominant negative form of mitochondrial DNA polymerase y (POLGdn) expression could be regulated by tetracycline; thus controlling mitochondrial respiratory function. Using this cell system, I demonstrated that POLGdn expression resulted in mitochondrial dysfunction through decreasing mtDNA content, depletion of mtDNA encoded mRNA and protein expression. This process was mediated by TFAM proteasome degradation. Mitochondrial dysfunction mediated by POLGdn expression led to a significant increase in cellular glycolysis and oxidative stress. Surprisingly, mitochondrial dysfunction also resulted in increased NAD(P)H oxidase (NOX) enzyme activity, which was shown to be essential for maintaining high glycolysis. Chemical Inhibition of NOX activity by diphenyliodonium (DPI) preferentially impacted the survival of mitochondrial defective cells. The colon cancer HCT116-/- cells that have lost transcriptional regulation of the mitochondrial assembling enzyme SCO2, leading to compromised mitochondrial respiratory function, were found to have increased NOX activity and were highly sensitive to DPI treatment. Ovarian epithelial cells with Ras transformation also exhibited an increase in NOX gene expression and NOX enzyme activity, rendering the cells sensitive to DPI inhibition especially under hypoxic condition. These data together suggest that NOX plays a novel role in maintaining high glycolysis in cancer cells with mitochondrial defects, and that NOX may be a potential target for cancer therapy.
机译:糖酵解和氧化应激增加是癌细胞的共同特征。这些代谢改变与线粒体功能障碍有关,可能是由线粒体DNA(mtDNA)突变,致癌信号,肿瘤抑制因子的丧失和肿瘤组织缺氧引起的。众所周知,线粒体在能量代谢,维持氧化还原平衡和调节细胞凋亡中起着核心作用。然而,在具有线粒体功能障碍和氧化应激的癌细胞中维持高糖酵解(Warburg效应)的生物化学和分子机制仍有待确定。这项研究的主要目标是建立一个独特的实验系统,在该系统中可以根据需要调节线粒体的呼吸功能,并使用该系统研究线粒体功能障碍与Warburg效应以及癌细胞中的氧化应激之间的机制联系。为了实现这些目标,我建立了一个四环素诱导系统,其中四环素可以调控线粒体DNA聚合酶y(POLGdn)表达的显性负向形式。从而控制线粒体的呼吸功能。使用这种细胞系统,我证明了POLGdn表达通过降低mtDNA含量,耗尽mtDNA编码的mRNA和蛋白质表达而导致线粒体功能障碍。该过程由TFAM蛋白酶体降解介导。 POLGdn表达介导的线粒体功能障碍导致细胞糖酵解和氧化应激显着增加。令人惊讶的是,线粒体功能障碍还导致NAD(P)H氧化酶(NOX)酶活性增加,这对于维持高糖酵解至关重要。二苯基碘鎓(DPI)对NOX活性的化学抑制作用优先影响线粒体缺陷细胞的存活。结肠癌HCT116-/-细胞失去了线粒体组装酶SCO2的转录调控,导致线粒体呼吸功能受损,被发现具有增加的NOX活性,并且对DPI治疗高度敏感。具有Ras转化作用的卵巢上皮细胞还表现出NOX基因表达和NOX酶活性的增加,从而使细胞对DPI抑制敏感,尤其是在低氧条件下。这些数据共同表明,NOX在具有线粒体缺陷的癌细胞中维持高糖酵解中起着新的作用,并且NOX可能是癌症治疗的潜在靶标。

著录项

  • 作者

    Lu, Weiqin.;

  • 作者单位

    The University of Texas Graduate School of Biomedical Sciences at Houston.;

  • 授予单位 The University of Texas Graduate School of Biomedical Sciences at Houston.;
  • 学科 Health Sciences Pharmacology.;Health Sciences Oncology.;Health Sciences Pathology.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 218 p.
  • 总页数 218
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号