首页> 外文学位 >Novel thermal barrier coatings (TBCs) that are resistant to high temperature attack by calcium oxide-magnesium oxide-silicon oxide-aluminum oxide (CMAS) glassy deposits.
【24h】

Novel thermal barrier coatings (TBCs) that are resistant to high temperature attack by calcium oxide-magnesium oxide-silicon oxide-aluminum oxide (CMAS) glassy deposits.

机译:新型的隔热涂层(TBC),可抵抗氧化钙-氧化镁-氧化硅-氧化铝(CMAS)玻璃状沉积物的高温侵蚀。

获取原文
获取原文并翻译 | 示例

摘要

Higher performance and durability requirements of gas-turbine engines will require a new generation of thermal barrier coatings (TBCs). This is particularly true of engines operated at higher temperatures, where TBCs are subjected to attack by CaO-MgO-Al2O3-SiO 2 (CMAS) glassy deposits. In this work, a new approach for mitigating CMAS attack on TBCs is introduced, where up to 20 mol% Al2O 3 and 5 mol% TiO2 in the form of a solid solution is incorporated into Y2O3-stabilized ZrO2 (YSZ) TBCs. The fabrication of such TBCs with engineered chemistries is made possible by the solution-precursor plasma spray (SPPS) process, which is uniquely suited for depositing coatings of metastable ceramics with extended solid-solubilities. In the current work, the TBC serves as a reservoir of Al and Ti solutes, which are incorporated into the molten CMAS glass that is in contact with the TBC. An accumulation of Al concentration in the CMAS glass as it penetrates the TBC shifts the glass composition from the difficult-to-crystallize psuedowollastonite field to the easy-to-crystallize anorthite field. The incorporation of Ti in the glass promotes crystallization of the CMAS glass by serving as a nucleating agent. This combined effect results in the near-complete crystallization of the leading edge of the CMAS front into anorthite, essentially arresting the front. Both of these phenomena will help crystallize the CMAS glass, making it immobile and ineffective in penetrating the TBC. It is shown that incorporation of both Al and Ti in the CMAS glass is essential for this approach to be effective. Additionally, incorporation of Al and Ti as solutes is expected to alleviate thermal-expansion and thermal-conductivity issues associated with crystalline second phases used before. Moreover, the metastable nature of the Al and Ti solutes will make them more readily available for incorporation in the molten CMAS glass. CMAS interactions with SPPS TBCs of various metastable compositions are compared with reference air plasma spray (APS) TBC.;In this dissertation, results from characterization and testing of these new TBCs are presented, together with a discussion of mechanisms responsible for CMAS-attack mitigation. The penetration of CMAS causes a loss of strain tolerance of the coating. Delamination maps are used to demonstrate the combined effects of CMAS penetration, temperature gradient and cooling inhomogeneity on the coating. Evans and Hutchinson's model has been used to produce delamination maps and predict the durability of novel TBCs.
机译:燃气涡轮发动机对性能和耐久性的更高要求将需要新一代的热障涂层(TBC)。对于在较高温度下运行的发动机而言尤其如此,其中TBC受到CaO-MgO-Al2O3-SiO 2(CMAS)玻璃状沉积物的侵蚀。在这项工作中,引入了一种减轻CMAS对TBC攻击的新方法,其中将高达20 mol%的Al2O 3和5 mol%的TiO2固溶体形式掺入Y2O3稳定的ZrO2(YSZ)TBC中。通过溶液前体等离子体喷涂(SPPS)工艺,可以用工程化学方法制造此类TBC,该工艺独特地适用于沉积具有扩展固溶性的亚稳陶瓷涂层。在当前的工作中,TBC用作Al和Ti溶质的储存库,它们被掺入与TBC接触的熔融CMAS玻璃中。当CMAS玻璃渗透到TBC中时,铝浓度的累积使玻璃成分从难以结晶的磷灰石硅灰石场转变为易于结晶的钙长石场。玻璃中Ti的掺入通过用作成核剂来促进CMAS玻璃的结晶。这种综合作用导致CMAS前端的前缘几乎完全结晶成钙长石,从而基本上阻止了前端。这两种现象都将有助于CMAS玻璃的结晶,使其无法移动并且无法穿透TBC。结果表明,将铝和钛都掺入CMAS玻璃中对于这种方法有效是必不可少的。另外,预期将Al和Ti作为溶质掺入将减轻与之前使用的结晶第二相相关的热膨胀和导热性问题。而且,Al和Ti溶质的亚稳态性质将使其更易于掺入熔融的CMAS玻璃中。将CMAS与各种亚稳组成的SPPS TBC的相互作用与参考空气等离子喷涂(APS)TBC进行比较。本文介绍了这些新TBC的表征和测试结果,并讨论了减轻CMAS攻击的机理。 CMAS的渗透会导致涂层的应变耐受性下降。分层图用于说明CMAS渗透,温度梯度和冷却不均匀性对涂层的综合影响。 Evans和Hutchinson的模型已用于生成分层图并预测新型TBC的耐用性。

著录项

  • 作者

    Aygun, Aysegul.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 176 p.
  • 总页数 176
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号