首页> 外文学位 >Microfluidic Techniques to perform more Physiologically Relevant Bone Flow Experiments.
【24h】

Microfluidic Techniques to perform more Physiologically Relevant Bone Flow Experiments.

机译:微流体技术可进行更多与生理相关的骨流实验。

获取原文
获取原文并翻译 | 示例

摘要

Mechanical stimulation of bone has often been used to prevent and/or treat various bone mass disorders. Osteocytes, as the major bone mechanosensory cell, are critical in regulating these disorders through the expression of factors that control bone homeostasis. The current methodology to study how fluid mechanostimulation of osteocytes regulates other cells in vitro is through the use of parallel plate flow chambers (PPFCs). In these studies, osteocytes are seeded on glass slides and loaded into PPFCs. Flow is applied to the osteocytes, and conditioned medium is collected, which can then be applied to the other cells being investigated. However, this methodology lacks real-time and direct signaling between the cells, and loses low half-life signal interactions. Additionally, these large PPFCs lack dimensional physiological relevance, and are non-viable for primary osteocyte studies. These limitations, however, can be mitigated through the use of microfluidics and/or co-culture.;In this thesis, we present microfluidic techniques to significantly improve the physiological relevance of in vitro osteocyte flow experiments. First, we developed a microfluidic co-culture device to investigate mechanoregulated osteocyte-osteoclast cross-talk. Specifically, we demonstrated that unstimulated osteocytes create an environment that is preferential for osteoclast precursor aggregation and differentiation. Furthermore, we observed increased osteocyte mechanosensitivity in co-culture with osteoclasts. Next, we investigated how platform dimensions and forces applied to the cells, independent of shear stress, can affect osteocyte mechanosensitivity. We determined that this sensitivity was due to differences in flow rates and drag forces applied to the cells. Finally, we fabricated a microfluidic pump that was capable of applying physiologically relevant oscillatory fluid flow and inducing osteocyte intracellular calcium responses within microchannels.;This work highlights the need to translate osteocyte mechanobiology studies to more dimensionally/biochemically relevant platforms using microfluidic technologies. As well, this work has already led to the development of in vitro platforms investigating osteocyte mechanical regulation of bone metastasis.
机译:骨骼的机械刺激常被用于预防和/或治疗各种骨骼质量疾病。骨细胞作为主要的骨机械感觉细胞,通过表达控制骨稳态的因子来调节这些疾病至关重要。当前研究骨细胞的流体力学刺激如何在体外调节其他细胞的方法是通过使用平行板流动腔(PPFC)。在这些研究中,将骨细胞接种在载玻片上,并装入PPFC中。将流量施加到骨细胞上,并收集条件培养基,然后将其施加到正在研究的其他细胞上。但是,这种方法缺乏细胞之间的实时和直接信号传导,并且失去了半衰期低的信号相互作用。此外,这些大的PPFC缺乏尺寸上的生理相关性,并且在原代骨细胞研究中不可行。这些限制,但是,可以通过使用微流控和/或共培养减轻。;在本文中,我们提出了微流控技术,以显着提高体外骨细胞流动实验的生理相关性。首先,我们开发了一种微流体共培养设备,以研究机械调节的骨细胞与破骨细胞的串扰。具体来说,我们证明了不受刺激的骨细胞创造了一个环境,该环境优先用于破骨细胞前体的聚集和分化。此外,我们观察到与破骨细胞共培养时对骨细胞的机械敏感性增加。接下来,我们研究了平台尺寸和作用于细胞的力如何独立于剪切应力,如何影响骨细胞的机械敏感性。我们确定这种敏感性是由于流速和施加到细胞的阻力不同所致。最后,我们制造了一种微流体泵,该泵能够在微通道内施加生理相关的振荡流体流并诱导骨细胞内的钙反应。;这项工作凸显了使用微流体技术将骨细胞力学生物学研究转化为更具维度/生化意义的平台的必要性。同样,这项工作已经导致研究骨转移机械调节骨转移的体外平台的发展。

著录项

  • 作者

    Middleton, Kevin.;

  • 作者单位

    University of Toronto (Canada).;

  • 授予单位 University of Toronto (Canada).;
  • 学科 Cellular biology.;Bioengineering.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 149 p.
  • 总页数 149
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号