首页> 外文学位 >Synthesis and Growth Mechanism of Multimetallic Core-Shell and Hollow-Like Nanoparticles.
【24h】

Synthesis and Growth Mechanism of Multimetallic Core-Shell and Hollow-Like Nanoparticles.

机译:多金属核壳和中空纳米颗粒的合成与生长机理。

获取原文
获取原文并翻译 | 示例

摘要

A thorough control of nanoscale systems is crucial for developing and improving their activity in a variety of application fields. These range from nanocatalysis, plasmonics, nanosensors, nanomedicine, communications, and others. Controlling and understanding the growth and spatial distribution of multi metallic systems allow us to explore the correlation between the characteristics of the nanoparticle (composition, surface chemistry, crystallinity, etc.) and their properties (mechanical, optical, structural, etc.). In this dissertation bimetallic and multi-metallic nanoparticles were obtained by a seed mediated method and galvanic replacement. Combinations of the type core shell of Au Ag, Au Pd and Au Pd-Au Au multi-metallic systems were studied. A galvanic replacement method was used to obtain hollow-like Au/Pt nanoboxes and Au AgM (M = Au, Pd or Pt) yolk-shell structures with voids in the middle shell. Characterization regarding composition, morphology, optical properties and atomic structures was performed. The mechanical properties of Au Pd nanocubes were studied in situ by the use of a TEM-AFM nanomechanical holder. The nanoparticles strengthening mechanism relies on the Au core resistance to the motion of partial dislocations. The catalytic efficiency of core-shell and nanorattles structures were tested with a model reaction for the decomposition of 4-ntp to 4-amp. Yolk-shell systems exhibit an enhancement in the catalytic decomposition rate in comparison with solid and bimetallic system. Finally, the development of an Electrospray assisted Langmuir Blodgett technique was successfully employed for the deposition of nanoparticles monolayer on a substrate. High particle density and coverage of the substrate makes this a promising technique to finely tune nanoparticles self-assembly.
机译:纳米系统的全面控制对于在各种应用领域中开发和改善其活性至关重要。这些范围包括纳米催化,等离激元,纳米传感器,纳米医学,通信等。控制和理解多金属系统的生长和空间分布,使我们能够探索纳米粒子的特征(组成,表面化学,结晶度等)与其性质(机械,光学,结构等)之间的相关性。本论文通过种子介导和电流置换获得了双金属和多金属纳米颗粒。研究了Au Ag,Au Pd和Au Pd-Au Au多金属体系的型核壳的组合。使用电流置换法获得中空状的Au / Pt纳米盒和Au AgM(M = Au,Pd或Pt)卵黄壳结构,中间壳具有空隙。进行了有关组成,形态,光学性质和原子结构的表征。通过使用TEM-AFM纳米机械支架原位研究了Au Pd纳米立方体的机械性能。纳米颗粒的增强机制依赖于Au核对部分位错运动的抵抗力。用模型反应将4-ntp分解为4-amp,测试了核-壳和纳米nano结构的催化效率。与固体和双金属体系相比,蛋黄-壳体系显示出催化分解速率的提高。最后,电喷雾辅助的Langmuir Blodgett技术的开发成功地用于在基质上沉积纳米颗粒单层。高颗粒密度和对基材的覆盖率使其成为微调纳米颗粒自组装的一项有前途的技术。

著录项

  • 作者单位

    The University of Texas at San Antonio.;

  • 授予单位 The University of Texas at San Antonio.;
  • 学科 Physics.;Nanoscience.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号