首页> 外文学位 >Microfluidic fuel cell.
【24h】

Microfluidic fuel cell.

机译:微流体燃料电池。

获取原文
获取原文并翻译 | 示例

摘要

Microfluidic fuel cells exploit the lack of convective mixing at low Reynolds number to eliminate the need for a physical membrane to separate fuel from oxidant. One of the issues in the development of microfluidic fuel cells is to understand the transport characteristics of fuel and oxidants. Similar to conventional fuel cells, the catalytic consumption of fuel and oxidant at respective electrode creates depleted region of reactants, ie, the diffusion layer, next to the electrode. The convective nature of the flow above the electrode in a microfluidic fuel cell, however, affects the rate at which fuel gets depleted in the diffusion layer. The interplay between convective flow and diffusion layer along an electrode, therefore, offers a different perspective when it comes to designing microfluidics fuel cell compared to that of conventional fuel cell.;Low utilization rate of the reactants is another key challenge that is faced in microfluidic fuel cell. Increasing the flow rate at which reactants are delivered into the microchannel increases the rate of mass transport of the reactants to the electrode, thereby increases current output. Increasing the flow rate, however, reduces the residence time of the reactants in the microchannel. Consequently, the percentage of the reactants that are being utilized by the electrodes are reduced, causing a drop in the utilization rate of the reactants.;In this thesis, the effects of diffusion layer on the performance of microfluidic fuel cell will be investigated. Subsequently, an active means of controlling the growth of the diffusion layer along the electrode by linearly reducing the height of the microchannel, using a rapid prototype technique, is discussed. An analytical solution for the mass transport limited current for the microchannel of linearly descending height is also derived and its theoretical value is compared with experimental results. To address the issue of low utilization rate of reactants, a novel fabrication method will be presented to improve the utilization rate without compromising on the current output. Last but not least, a microfluidics microbial biofuel cell with an air breathing cathode, with fuel and oxidant operating in the same compartment, is also discussed.
机译:微流体燃料电池利用了低雷诺数下对流混合的不足,从而消除了使用物理膜将燃料与氧化剂分离的需求。开发微流控燃料电池的问题之一是了解燃料和氧化剂的传输特性。与常规燃料电池相似,燃料和氧化剂在相应电极上的催化消耗在电极旁边产生了反应物的耗尽区域,即扩散层。然而,微流体燃料电池中电极上方的流动的对流性质影响燃料在扩散层中消耗的速率。因此,与传统燃料电池相比,沿电极对流流动和扩散层之间的相互作用为设计微流体燃料电池提供了不同的观点。反应物利用率低是微流体面临的另一个关键挑战燃料电池。增加反应物被输送到微通道中的流速,从而增加了反应物向电极的质量传输率,从而增加了电流输出。然而,增加流速减少了反应物在微通道中的停留时间。因此,减少了电极所使用的反应物的百分比,从而导致了反应物的利用率下降。;本文研究了扩散层对微流体燃料电池性能的影响。随后,讨论了使用快速原型技术通过线性减小微通道的高度来控制扩散层沿电极生长的有效方法。还推导了线性下降高度微通道传质限制电流的解析解,并将其理论值与实验结果进行了比较。为了解决反应物利用率低的问题,将提出一种新颖的制造方法来提高利用率而不损害电流输出。最后但并非最不重要的是,还讨论了具有空气呼吸阴极的微流体微生物生物燃料电池,燃料和氧化剂在同一隔室中运行。

著录项

  • 作者

    Lim, Keng Guan.;

  • 作者单位

    Brown University.;

  • 授予单位 Brown University.;
  • 学科 Engineering General.;Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 143 p.
  • 总页数 143
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程基础科学;机械、仪表工业;
  • 关键词

  • 入库时间 2022-08-17 11:38:33

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号