首页> 外文学位 >Magnetic manipulation of colloids at the micro and nanoscale.
【24h】

Magnetic manipulation of colloids at the micro and nanoscale.

机译:在微观和纳米尺度上对胶体的磁性操作。

获取原文
获取原文并翻译 | 示例

摘要

Manipulation and assembly of colloidal sub-micron and nanometer sized particles is important in many applications ranging from drug delivery and separation of biologically different species of micro-organisms and molecules to fabrication of meta-material micro- and nanostructures consisting of regular arrays of particles. Most of the methods that have been proposed are based on short-range interactions including chemical affinity and surface forces. Such forces are difficult and, most often, impossible to manipulate using externally tunable apparatus. Electric fields have been employed to create longer range forces. However, electric fields often affect biological molecules and can be substantially screened in ionic solutions. Magnetic field manipulation is a relatively unexplored method of manipulation of colloidal particles.;Some work has been performed in the recent decade to develop methods of manipulation and assembly of non-magnetic colloidal particles near surfaces. However, the developed methods have been limited mainly to particles greater than 1 micrometer in diameter which experience relatively small Brownian motion. The question can arises: To what extent similar methods are applicable to manipulation of much smaller particles and molecules? Can Brownian motion be helpful for some applications? Another important question is: Can non-magnetic colloidal objects be manipulated away from surfaces?;These are the main questions addressed in this work. The main contribution of this thesis is the development of a series of magnetic manipulation methods by which non-magnetic colloidal sub-micron particles and molecules can be manipulated near surfaces and in the bulk of a fluid suspension. One specific important contribution of this thesis is demonstration of magnetic trapping and transport of non-magnetic sub-micron particles and molecules near surfaces patterned with ferromagnetic material. This work is the first to demonstrate that biological molecules can be attached to designated areas on a substrate using magnetic trapping, for example. Development of a method for magnetic fractionation of non-magnetic colloids by size in bulk fluid suspension is also an important specific contribution of this thesis. Such fractionation dramatically improves on the speed of previously proposed depletion fractionation technique. Each specific method mentioned above will be described in separate chapters of this thesis.
机译:胶体亚微米和纳米级颗粒的操纵和组装在许多应用中都很重要,从药物输送和生物上不同种类的微生物和分子的分离到由规则的颗粒阵列组成的超材料微米和纳米结构的制造。已提出的大多数方法都基于短程相互作用,包括化学亲和力和表面力。使用外部可调设备很难操纵这种力,并且通常是无法操纵这种力的。电场已被用来产生更大范围的力。但是,电场通常会影响生物分子,并且可以在离子溶液中进行实质上的筛选。磁场操纵是胶体粒子操纵的一种相对未开发的方法。近十年来已经开展了一些工作来开发操纵和组装表面附近非磁性胶体粒子的方法。但是,已开发的方法主要限于直径大于1微米且经历相对较小布朗运动的粒子。可能会出现问题:类似的方法在多大程度上适用于处理更小的粒子和分子?布朗运动可以对某些应用有帮助吗?另一个重要的问题是:非磁性胶体可以在远离表面的地方操纵吗?;这些是本文中要解决的主要问题。本论文的主要贡献是开发了一系列的磁性操纵方法,通过这些方法,可以在表面附近和大部分流体悬浮液中操纵非磁性胶体亚微米颗粒和分子。本论文的一个重要的重要贡献是证明了磁性捕获和非磁性亚微米颗粒和分子在铁磁材料图案化表面附近的传输。这项工作是首次证明,例如,可以使用磁阱将生物分子附着到基板上的指定区域。体积流体悬浮液中按大小对非磁性胶体进行磁性分级的方法的开发,也是本论文的重要具体贡献。这样的分级显着提高了先前提出的耗尽分级技术的速度。上面提到的每种具体方法将在本论文的单独章节中进行介绍。

著录项

  • 作者

    Halverson, Derek Stieler.;

  • 作者单位

    Drexel University.;

  • 授予单位 Drexel University.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 74 p.
  • 总页数 74
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无线电电子学、电信技术;
  • 关键词

  • 入库时间 2022-08-17 11:38:35

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号