首页> 外文学位 >Light metal alanates and amides for reversible hydrogen storage applications.
【24h】

Light metal alanates and amides for reversible hydrogen storage applications.

机译:轻金属的铝酸盐和酰胺可逆储氢。

获取原文
获取原文并翻译 | 示例

摘要

Hydrogen is undoubtedly one of the key alternatives to replace petroleum products as a clean energy carrier for both transportation and stationary applications. Although there have been numerous material systems studied as potential candidates for hydrogen storage applications, none of the materials known to date has demonstrated sufficient hydrogen capacity or efficiency in the required operating temperature ranges. There are still considerable opportunities for the discovery of new materials that could lead to advances in science as well as commercial technologies in this area. In this study, two new hydrogen-storage systems, i.e. alanate/amide and LiMgN, are investigated.;Firstly, we found that if LiAlH4 and LiNH2 are allowed to react in a proper molar ratio, the LiH that forms as an intermediate product of the dehydrogenation of LiAlH4 can subsequently react with LiNH2 to release H2 at temperatures below 300°C, much lower than that without LiNH2. However, this system is only partially reversible. The difficulty of reversing the reaction is attributed to the irreversibility of the dehydrogenation reaction of LiAlH4 to Li3AlH6. Further experimental results showed that the reversible storage capacity of the combined alanate/amide material system is increased to 7.0 wt% under 300°C, if LiNH2 were reacted with Li3AlH6, instead of LiAlH4, in a 3:1 molar ratio. We also found that the re-formation of Li3AlH 6 depends strongly on the heating rate during the hydrogenation process. To improve the kinetic and thermodynamic properties of the Li-Al-N-H systems, the reaction between Li3AlH6 and Mg(NH2) 2 was studied based on the understanding of the destabilizing effect of amide on alanates. The Li-Al-Mg-N-H system would have better kinetic properties than the Li-Al-N-H system due to the addition of Mg, based on the published research results on the comparison between the Li-Mg-N-H and Li-N-H systems. A reversible 6.2 wt% H2 storage capacity has been demonstrated under the conditions of this study.;Secondly, our experimental findings in this study also demonstrated the potential of a new type of nitride---binary light metal nitride for hydrogen storage. The reaction of MgH2 with LiNH2 in 1:1 ratio produces 8.1 wt% of hydrogen with the dehydrogenated product being LiMgN. This binary nitride LiMgN can be hydrogenated under 2000 psi hydrogen pressure and 160°C with TiCl3 as catalyst. A reversible 8 wt% H 2 storage capacity has been demonstrated under the conditions used in this study.
机译:毫无疑问,氢气是替代石油产品作为运输和固定应用的清洁能源载体的主要替代方法之一。尽管已经研究了许多材料系统作为储氢应用的潜在候选者,但迄今为止,没有一种材料在所需的工作温度范围内显示出足够的氢容量或效率。发现新材料的机会仍然很大,这可能会导致该领域的科学和商业技术取得进步。在这项研究中,研究了两个新的氢存储系统,即丙二酸酯/酰胺和LiMgN .;首先,我们发现如果允许LiAlH4和LiNH2以适当的摩尔比反应,则LiH可以作为中间产物LiAlH4的脱氢反应随后可与LiNH2反应,在低于300°C的温度下释放H2,远低于没有LiNH2的情况。但是,该系统仅是部分可逆的。逆反应的困难归因于LiAlH4到Li3AlH6的脱氢反应的不可逆性。进一步的实验结果表明,如果LiNH2与Li3AlH6而不是LiAlH4以3:1的摩尔比反应,则在300°C下丙氨酸/酰胺组合材料系统的可逆存储容量增加到7.0 wt%。我们还发现,Li3AlH 6的重整很大程度上取决于加氢过程中的加热速率。为了提高Li-Al-N-H系统的动力学和热力学性质,在了解酰胺对丙氨酸的去稳定作用的基础上,研究了Li3AlH6与Mg(NH2)2之间的反应。基于已发表的关于Li-Mg-NH和Li-NH系统之间比较的研究结果,由于添加了Mg,Li-Al-Mg-NH系统将具有比Li-Al-NH系统更好的动力学性能。 。在这项研究的条件下已证明可逆的6.2 wt%H2储存能力。其次,我们在这项研究中的实验结果也证明了新型氮化物-二元轻金属氮化物在储氢方面的潜力。 MgH2与LiNH2的比例为1:1的反应产生8.1 wt%的氢,而脱氢产物为LiMgN。该二元氮化物LiMgN可以在2000 psi的氢气压力和160°C下用TiCl3作为催化剂进行氢化。在本研究中使用的条件下,已证明可逆的8 wt%H 2储存容量。

著录项

  • 作者

    Lu, Jun.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Engineering Metallurgy.;Energy.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 200 p.
  • 总页数 200
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 冶金工业;能源与动力工程;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号