首页> 外文学位 >Engineering the filamentous molecular chaperone gamma prefoldin for construction of protein nanostructures.
【24h】

Engineering the filamentous molecular chaperone gamma prefoldin for construction of protein nanostructures.

机译:工程化丝状分子伴侣伽玛前折叠蛋白以构建蛋白质纳米结构。

获取原文
获取原文并翻译 | 示例

摘要

Proteins have the potential to direct the assembly of nanostructured materials and impart unique functions to such systems owing to their size, shape, and bioactivity. However, a current problem with the use of proteins as structural scaffolds is the controllable design of new and robust protein shapes, as well as generating stable oligomeric precursors. An extraordinarily stable filamentous protein, gamma prefoldin (gamma PFD), from the hyperthermophile Methanocaldococcus jannaschii was discovered and characterized. Prefoldin is a molecular chaperone found in the domains eukarya and archaea that acts in conjunction with Group II chaperonin to correctly fold other nascent proteins. gamma PFD was subcloned and expressed in Eschericia coli along with its homologs alpha and beta PFD. gamma PFD would not assemble with either protein, instead forming long filaments of defined dimensions with lengths exceeding 1 microm. A possible molecular model for filament assembly is discussed.;For the overall purpose of devising a controllable template for the construction of biomaterials, a capping protein was rationally designed to control the filament length over multiple length scales. A step-wise polymerization model of filament formation was developed that quantitatively describes the resulting distributions of filaments for lengths ranging from less than 10 nm to over 100 nm. The versatility of the gamma PFD was further demonstrated by generating a series of narrowly-sized hybrid filaments containing functional peptide fusion partners, illustrating that structure and function can be designed into the gamma PFD as independent and separable components. Implications of the design of the capping protein with regard to evolution of protein-protein association sites are also discussed.;Protein design has been used to develop new macromolecular protein structures like bundled filaments and micelles, but the structures are fundamentally limited by complexity, functionality, and recombinant expression levels. A combinatorial protein engineering approach was undertaken to design specifically interlocking proteins derived from the natural filamentous protein gamma prefoldin. Included with the rational design of two cross-linked PFD monomers, this approach enables creation of a diverse array of one dimensional and two-dimensional structures like square, hexagonal, and octagonal pores, and protein lattices of various repeat lengths.
机译:由于其大小,形状和生物活性,蛋白质具有指导纳米结构材料组装并赋予此类系统独特功能的潜力。然而,使用蛋白质作为结构支架的当前问题是新的和健壮的蛋白质形状的可控设计,以及产生稳定的寡聚前体。发现并鉴定了来自超嗜热菌詹氏甲烷球菌的极其稳定的丝状蛋白γ前折叠蛋白(γPFD)。 Prefoldin是在eukarya和古细菌域中发现的分子伴侣,与II组伴侣蛋白结合以正确折叠其他新生蛋白质。将γPFD及其同系物α和βPFD亚克隆并在大肠杆菌中表达。 γPFD不会与任何一种蛋白质组装,而是形成长度超过1微米的确定尺寸的长丝。讨论了可能的细丝组装分子模型。为了总体目的设计可控制的模板,用于构建生物材料,合理设计了一种封端蛋白以在多个长度范围内控制细丝的长度。开发了长丝形成的逐步聚合模型,该模型定量描述了长度范围从小于10 nm到大于100 nm的长丝的最终分布。通过生成一系列包含功能性肽融合伴侣的窄尺寸杂交细丝,进一步证明了γPFD的多功能性,这说明可以将结构和功能设计为独立且可分离的组分到γPFD中。还讨论了封端蛋白质设计对蛋白质-蛋白质缔合位点进化的影响。;蛋白质设计已被用于开发新的大分子蛋白质结构,例如捆绑的细丝和胶束,但结构从根本上受到复杂性,功能性的限制和重组表达水平。采取了组合蛋白工程方法来设计特异性地互锁的蛋白,这些蛋白是从天然丝状蛋白γprefoldin衍生而来的。包括两个交联PFD单体的合理设计在内,该方法可以创建一维和二维结构(如正方形,六边形和八边形的孔)以及各种重复长度的蛋白质晶格的多样化阵列。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号