首页> 外文学位 >Composite cathode materials development for intermediate temperature solid oxide fuel cell systems.
【24h】

Composite cathode materials development for intermediate temperature solid oxide fuel cell systems.

机译:用于中温固体氧化物燃料电池系统的复合阴极材料开发。

获取原文
获取原文并翻译 | 示例

摘要

Solid oxide fuel cell (SOFC) systems are of particular interest as electrochemical power systems that can operate on various hydrocarbon fuels with high fuel-to-electrical energy conversion efficiency. Within the SOFC stack, La0.8Sr 0.2Ga0.8Mg0.115Co0.085O3-delta (LSGMC) has been reported as an optimized composition of lanthanum gallate based electrolytes to achieve higher oxygen ionic conductivity at intermediate temperatures, i.e., 500-700°C. The electrocatalytic properties of interfaces between LSGMC electrolytes and various candidate intermediate-temperature SOFC cathodes have been investigated. Sm0.5Sr0.5CoO 3-delta (SSC), and La0.6Sr0.4Co0.2Fe 0.8O3-delta (LSCF), in both pure and composite forms with LSGMC, were investigated with regards to both oxygen reduction and evolution, A range of composite cathode compositions, having ratios of SSC (in wt.%) with LSGMC (wt.%) spanning the compositions 9:1, 8:2, 7:3, 6:4 and 5:5, were investigated to determine the optimal cathode-electrolyte interface performance at intermediate temperatures. All LSGMC electrolyte and cathode powders were synthesized using the glycine-nitrate process (GNP). Symmetrical electrochemical cells were investigated with three-electrode linear dc polarization and ac impedance spectroscopy to characterize the kinetics of the interfacial reactions in detail. Composite cathodes were found to perform better than the single phase cathodes due to significantly reduced polarization resistances. Among those composite SSC-LSGMC cathodes, the 7:3 composition has demonstrated the highest current density at the equivalent overpotential values, indicating that 7:3 is an optimal mixing ratio of the composite cathode materials to achieve the best performance. For the composite SC-LSGMC cathode/LSGMC interface, the cathodic overpotential under 1 A/cm2 current density was as low as 0.085 V at 700°C, 0.062V at 750°C and 0.051V at 800°C in air. Composite LSCF-LSGMC cathode/LSGMC interfaces were found to have about twice the exchange current density of composite SSC-LSGMC/LSGMC interfaces at 700°C.; In this research effort, it has been found that: (1) the glycine-nitrate combustion process is favorable to produce perovskite-type oxide powders with good phase purity and negligible intermediate or contaminant phases; (2) The electrochemical performance for both the SSC-LSGMC and LSCF-LSGMC composite electrode materials on LSGMC confirm their potential for use in intermediate temperature SOFC applications; (3) The composite LSCF-LSGMC electrode exhibited much higher current density than the composite SSC-LSGMC electrode in the current dc polarization measurements; and (4) Primary market study results showed promising commercialization feasibility of these new materials sets, provided production is scaled up (with dramatic cost reductions).
机译:固体氧化物燃料电池(SOFC)系统作为电化学动力系统尤为重要,它可以在各种烃类燃料上以高燃料-电能转换效率运行。在SOFC电池组中,据报道,La0.8Sr 0.2Ga0.8Mg0.115Co0.085O3-delta(LSGMC)是基于镓酸镧的电解质的优化组成,可以在中等温度(即500-700°C)下实现更高的氧离子电导率。研究了LSGMC电解质和各种候选中温SOFC阴极之间界面的电催化性能。研究了Sm0.5Sr0.5CoO 3-delta(SSC)和La0.6Sr0.4Co0.2Fe 0.8O3-delta(LSCF)的纯氧形式和复合物形式与LSGMC的氧还原和放出有关,A范围研究具有SSC(以重量%计)与LSMGC(重量%)的比例跨越组合物9:1、8:2、7:3、6:4和5:5的复合阴极组合物的含量,以确定在中等温度下具有最佳的阴极-电解质界面性能。所有LSGMC电解质和阴极粉末均使用硝酸甘氨酸法(GNP)合成。用三电极线性直流极化和交流阻抗谱研究对称电化学电池,以详细表征界面反应的动力学。发现复合阴极由于大大降低的极化电阻而比单相阴极表现更好。在那些复合SSC-LSGMC阴极中,7:3组合物在等效的超电势值下显示出最高的电流密度,表明7:3是复合阴极材料实现最佳性能的最佳混合比。对于复合SC-LSGMC阴极/ LSGMC界面,在1 A / cm2电流密度下的阴极过电势在700°C时低至0.085 V,在750°C时低至0.062V,在800°C时在空气中低至0.051V。发现复合LSCF-LSGMC阴极/ LSGMC接口在700°C时的交换电流密度约为复合SSC-LSGMC / LSGMC接口的交换电流密度的两倍。在这项研究工作中,发现:(1)硝酸甘氨酸燃烧过程有利于生产具有良好相纯度和可忽略的中间相或污染物相的钙钛矿型氧化物粉末; (2)LSGMC上SSC-LSGMC和LSCF-LSGMC复合电极材料的电化学性能证实了它们在中温SOFC应用中的潜力; (3)在电流dc极化测量中,复合LSCF-LSGMC电极的电流密度比复合SSC-LSGMC电极高得多。 (4)初步的市场研究结果表明,只要扩大生产规模(大幅降低成本),这些新材料的商业化可行性就很有希望。

著录项

  • 作者

    Qin, Ya.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 107 p.
  • 总页数 107
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号