首页> 外文学位 >Surface accuracy analysis and mathematical modeling of deployable large aperture elastic antenna reflectors.
【24h】

Surface accuracy analysis and mathematical modeling of deployable large aperture elastic antenna reflectors.

机译:可展开的大孔径弹性天线反射器的表面精度分析和数学建模。

获取原文
获取原文并翻译 | 示例

摘要

One class of deployable large aperture antenna consists of thin light-weight parabolic reflectors. A reflector of this type is a deployable structure that consists of an inflatable elastic membrane that is supported about its perimeter by a set of elastic tendons and is subjected to a constant hydrostatic pressure. A design may not hold the parabolic shape to within a desired tolerance due to an elastic deformation of the surface, particularly near the rim. We can compute the equilibrium configuration of the reflector system using an optimization-based solution procedure that calculates the total system energy and determines a configuration of minimum energy. Analysis of the equilibrium configuration reveals the behavior of the reflector shape under various loading conditions. The pressure, film strain energy, tendon strain energy, and gravitational energy are all considered in this analysis. The surface accuracy of the antenna reflector is measured by an RMS calculation while the reflector phase error component of the efficiency is determined by computing the power density at boresight. Our error computation methods are tailored for the faceted surface of our model and they are more accurate for this particular problem than the commonly applied Ruze Equation.;Previous analytical work on parabolic antennas focused on axisymmetric geometries and loads. Symmetric equilibria are not assumed in our analysis. In addition, this dissertation contains two principle original findings: (1) the typical supporting tendon system tends to flatten a parabolic reflector near its edge. We find that surface accuracy can be significantly improved by fixing the edge of the inflated reflector to a rigid structure; (2) for large membranes assembled from flat sheets of thin material, we demonstrate that the surface accuracy of the resulting inflated membrane reflector can be improved by altering the cutting pattern of the flat components.;Our findings demonstrate that the proper choice of design parameters can increase the performance of inflatable antennas, opening up new antenna applications where higher resolution and greater sensitivity are desired. These include space applications involving high data rates and high bandwidths, such as lunar surface wireless local networks and orbiting relay satellites. A light-weight inflatable antenna is also an ideal component in aerostat, airship and free balloon systems that supports communication, surveillance and remote sensing applications.
机译:一类可展开的大孔径天线由薄的轻质抛物面反射器组成。这种类型的反射器是可展开结构,其由可膨胀的弹性膜组成,该膨胀的弹性膜在其周围被一组弹性筋支撑并承受恒定的静水压力。由于表面的弹性变形,特别是在轮缘附近,设计可能无法将抛物线形状保持在期望的公差内。我们可以使用基于优化的求解过程来计算反射器系统的平衡配置,该求解过程将计算总系统能量并确定最小能量的配置。平衡构型的分析揭示了反射镜形状在各种载荷条件下的行为。在此分析中考虑了压力,薄膜应变能,腱应变能和重力能。天线反射器的表面精度通过RMS计算来测量,而效率的反射器相位误差分量是通过计算视轴上的功率密度来确定的。我们的误差计算方法是针对模型的多面曲面量身定制的,比起常用的Ruze方程,该方法对这个特定问题的精度更高。以前关于抛物面天线的分析工作主要集中在轴对称的几何形状和载荷上。在我们的分析中不假设对称平衡。此外,本文包含两个主要的原始发现:(1)典型的支撑筋系统趋向于将抛物面反射器靠近其边缘变平。我们发现,通过将充气反射镜的边缘固定到刚性结构上,可以显着提高表面精度。 (2)对于由薄材料的平板组装而成的大型膜,我们证明了通过改变扁平组件的切割模式可以提高充气膜反射器的表面精度。我们的发现表明,正确选择设计参数可以提高充气天线的性能,在需要更高分辨率和更高灵敏度的地方开辟了新的天线应用。这些包括涉及高数据速率和高带宽的空间应用,例如月球表面无线局域网和绕行卫星。轻巧的充气天线也是浮空器,飞艇和自由气球系统中的理想组件,可支持通信,监视和遥感应用。

著录项

  • 作者

    Coleman, Michael J.;

  • 作者单位

    The George Washington University.;

  • 授予单位 The George Washington University.;
  • 学科 Mathematics.;Engineering Materials Science.;Physics Electricity and Magnetism.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号