首页> 外文学位 >Electrosynthesis and characterization of superparamagnetic organic-inorganic nanocomposite films.
【24h】

Electrosynthesis and characterization of superparamagnetic organic-inorganic nanocomposite films.

机译:超顺磁性有机-无机纳米复合薄膜的电合成和表征。

获取原文
获取原文并翻译 | 示例

摘要

New electrochemical methods were developed to fabricate superparamagnetic organic-inorganic nanocomposites. The methods were based on the electrosynthesis of gamma-Fe2O3, Mn3O4 and NiFe 2O4 in situ in a polymer matrix. Various composite materials were developed using new electrochemical strategies, which were based on the use of strong and weak polyelectrolytes and polymer-metal ion complexes. The deposited films were studied by XRD, TO, DTA, SEM and AFM. The results show that cathodic deposits with thickness of several microns can be obtained on various conductive substrates. The results reveal that the weight percentage of inorganic phase in the deposits reduced with the increase of the polymer concentration in the electrochemical bath solution.;DC magnetization and AC susceptibility measurements were used to study the relationship between the magnetic properties and the average particle size by studying the superparamagnetic behavior and ferrimagnetic phase transitions of gamma-Fe2O3 and Mn3O4 nanoparticles in the temperature range of 2 K - 300 K. The results show that the blocking temperature TB is mainly controlled by the average particle size of the nanoparticles, and increasing the average particle size results in an upward shift of the TB. One observes no frequency dependence of TB, which indicates strong interparticle interaction in the nanoparticle assembly, in agreement with the structural results. The results revealed superparamagnetic behavior in Mn3O4 nanoparticles below the ferrimagnetic Neel temperature TN, and that T B was identified by a peak in the temperature lower than the ferrimagnetic transition peak marked by TN in the AC measurement. It is found that both TB and TN of Mn3O4 depend on the average particle size, and reducing the average particle size of Mn 3O4 from 3.5 nm to 2.8 nm results in a shift of TB from 14 K to 7 K, and TN from 36 K to 31 K (bulk Mn3O4 TN = 42 K).;The particle size distribution was measured by HRTEM and evaluated by theoretical models interpreting the magnetic measurement data. The two methods are in good agreement with each other. The results show that the average particle sizes of Mn3O4 and gamma-Fe2O3 can be adjusted by the selection of polymers with different functional properties, the polymer concentration in the solutions and annealing temperatures. The particle size distribution in the developed composites followed the lognormal distribution. A double-lognormal distribution was required to interpret the magnetization data of the system containing strong interparticle interactions, and to interpret the double-peak phenomenon observed in the imaginary part of the susceptibility in some nanocomposites.
机译:开发了新的电化学方法来制造超顺磁性有机-无机纳米复合材料。该方法基于在聚合物基质中原位电合成γ-Fe2O3,Mn3O4和NiFe 2O4。使用新的电化学策略开发了各种复合材料,这些策略基于强和弱聚电解质和聚合物-金属离子络合物的使用。通过XRD,TO,DTA,SEM和AFM研究了沉积的膜。结果表明,可以在各种导电基底上获得厚度为几微米的阴极沉积物。结果表明,随着电化学浴液中聚合物浓度的增加,沉积物中无机相的重量百分比降低。;通过直流磁化和交流磁化率测量研究磁性能与平均粒径之间的关系。研究了在2 K-300 K温度范围内γ-Fe2O3和Mn3O4纳米粒子的超顺磁行为和亚铁磁相变。结果表明,封端温度TB主要受纳米粒子平均粒径的控制,并且增加平均颗粒尺寸导致结核菌的向上移位。人们没有观察到TB的频率依赖性,这表明纳米颗粒组装体中的强烈的颗粒间相互作用与结构结果一致。结果表明,在亚铁磁性尼尔温度TN以下,Mn3O4纳米颗粒具有超顺磁性行为,并且在交流测量中,通过低于TN标记的亚铁磁性转变峰的温度中的峰来识别T B。发现Mn3O4的TB和TN均取决于平均粒径,将Mn 3O4的平均粒径从3.5 nm减小至2.8 nm会导致TB从14 K变为7 K,而TN从36 K发生位移。到31 K(大块Mn3O4 TN = 42 K)。;通过HRTEM测量粒度分布,并通过解释磁测量数据的理论模型进行评估。两种方法彼此非常吻合。结果表明,可以通过选择具有不同功能特性的聚合物,溶液中的聚合物浓度和退火温度来调节Mn3O4和γ-Fe2O3的平均粒径。展开的复合材料中的粒度分布遵循对数正态分布。需要双对数正态分布来解释包含强粒子间相互作用的系统的磁化数据,并解释在某些纳米复合材料的磁化率虚部观察到的双峰现象。

著录项

  • 作者

    Cao, Jun.;

  • 作者单位

    McMaster University (Canada).;

  • 授予单位 McMaster University (Canada).;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 233 p.
  • 总页数 233
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号