首页> 外文学位 >Density relaxation of granular matter through Monte Carlo and granular dynamics simulations.
【24h】

Density relaxation of granular matter through Monte Carlo and granular dynamics simulations.

机译:通过蒙特卡洛和颗粒动力学模拟,颗粒物质的密度松弛。

获取原文
获取原文并翻译 | 示例

摘要

Granular materials are the principal ingredients of the industrial complex involved with the handling and processing of bulk solids including pharmaceuticals, chemicals, agricultural and mining materials. Despite the enormous importance of these materials in society, their behavior is not well-understood; in fact, there is no known model available that is capable of predicting the wide range of phenomenon that have been observed. One of the most important of these is known as density relaxation. Here, a granular material undergoes an increase in solids fraction as a result of the application of discrete taps or continuous vibrations.;In this dissertation, the density relaxation phenomenon is promoted by the application of discrete taps to a periodic system of monodisperse spheres. Both stochastic (Monte Carlo) and deterministic (granular dynamics) simulations are employed in this work. The granular microstructure of the system particles was analyzed via radial distribution function, coordination number, and the distribution of sphere centers in the vertical direction.;In the MC simulations, the effect of a tap applied to the system is modeled using two different approaches: (1) vertical position-dependent expansion of the particles, and (2) uniformly lifting the entire ensemble on a small displacement above the supporting floor. Both methods resulted in an increase in the system density after numerous thousands of taps. However, method (1) exhibited a strong dependence of the final system density on the fill height, which has not been experimentally reported in the literature. On the other hand, this dependency was not seen when the expansion of type (2) was used. The MC evolution of the bulk solids fraction was found to be in qualitative agreement with an inverse log form that has been reported in the experimental literature. The simulated results illustrated that the bulk density is related to amount of the lift in method (2), with a critical value producing the most favorable results. Most striking is the finding that as the taps evolve, the particles self-organize into quasi-crystalline layers, initiated by the planar floor.;The granular dynamics approach makes use of uniform, inelastic, and frictional spheres that interact via laws from well-founded collision-mechanics principles. The equations of motion are numerically integrated to obtain the positions and velocities of the particles. The tapping disturbance consisted of a harmonic intermittent oscillation of the floor. The same type of self-organization into quasi-crystalline layers first identified in the MC simulations was also found here, strongly supporting the conjecture that this is a universal mechanism of the density relaxation process.
机译:颗粒材料是涉及处理和加工散装固体(包括药物,化学药品,农业和采矿材料)的工业园区的主要成分。尽管这些材料在社会中具有极其重要的意义,但人们对其行为的理解却不够充分。实际上,没有可用的已知模型能够预测已观察到的广泛现象。其中最重要的一项就是密度松弛。在此,由于离散抽头的施加或连续振动的结果,粒状材料的固含量增加。在本论文中,通过将离散抽头应用于周期性的单分散球体,促进了密度松弛现象。这项工作采用了随机模拟(蒙特卡洛)和确定性模拟(颗粒动力学)。通过径向分布函数,配位数和垂直方向上的球心分布分析了系统粒子的颗粒微观结构。在MC仿真中,使用两种不同的方法对应用到系统的丝锥效果进行了建模: (1)粒子在垂直位置上的膨胀,以及(2)在支撑地板上方的小位移下均匀地提升整个整体。数以千计的抽头之后,两种方法都导致系统密度的增加。但是,方法(1)表现出最终系统密度对填充高度的强烈依赖性,这在文献中尚未有实验报道。另一方面,使用类型(2)的扩展时看不到这种依赖性。发现散装固体部分的MC演变与实验文献中已报道的逆对数形式在质量上一致。仿真结果表明,在方法(2)中,堆密度与升力量有关,临界值产生最有利的结果。最惊人的发现是,随着丝锥的发展,颗粒会自组织成准晶体层,并由平坦的地板引发。颗粒动力学方法利用了均匀,无弹性和摩擦的球体,这些球体通过良好的定律相互作用。建立了碰撞力学原理。将运动方程式进行数值积分以获得粒子的位置和速度。敲击干扰由地板的谐波间歇振荡组成。在这里还发现了在MC模拟中首先识别出的相同类型的自组织成准晶体层,这强烈支持了这样的推测,即这是密度松弛过程的普遍机制。

著录项

  • 作者

    Dybenko, Oleksandr M.;

  • 作者单位

    New Jersey Institute of Technology.;

  • 授予单位 New Jersey Institute of Technology.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2008
  • 页码 145 p.
  • 总页数 145
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号