首页> 外文学位 >Partitioned time discretization for atmosphere-ocean interaction .
【24h】

Partitioned time discretization for atmosphere-ocean interaction .

机译:大气-海洋相互作用的分区时间离散化。

获取原文
获取原文并翻译 | 示例

摘要

Numerical algorithms are proposed, analyzed and tested for improved efficiency and reliability of the dynamic core of climate codes. The commonly used rigid lid hypothesis is assumed, which allows instantaneous response of the interface to changes in mass. Additionally, moisture transport is ignored, resulting in a static interface. A central algorithmic feature is the numerical decoupling of the atmosphere and ocean calculations by a semi-implicit treatment of the interface data, i.e. partitioned time stepping. Algorithms are developed for simplified continuum models retaining the key mathematical structure of the atmosphere-ocean equations.;The work begins by studying linear parameterization of momentum ux in terms of wind shear, coupling the equations. Partitioned variants of backward-Euler are developed allowing large time steps. Higher order accuracy is achieved by deferred correction. Adaptations are developed for nonlinear coupling. Most notably an application of geometric averaging is used to retain unconditional stability. This algorithm is extended to allow different size time steps for the subcalculations. Full numerical analyses are performed and computational experiments are provided.;Next, heat convection is added including a nonlinear parameterization of heat flux in terms of wind shear and temperature. A partitioned algorithm is developed for the atmosphere and ocean coupled velocity-temperature system that retains unconditional stability. Furthermore, uncertainty quantification is performed in this case due to the importance of reliably calculating heat transport phenomena in climate modeling. Noise is introduced in two coupling parameters with an important role in stability. Numerical tests investigate the variance in temperature, velocity and average surface temperature.;Partitioned methods are highly efficient for linearly coupled 2 fluid problems. Extensions of these methods for nonlinear coupling where the interface data is processed properly before passing yield highly efficient algorithms. One reason is due to their strong stability properties. Convergence also holds under time step restrictions not dependent on mesh size. It is observed that two-way coupling (requiring knowledge of both atmosphere and ocean velocities on the interface) generates less uncertainty in the calculation of average surface temperature compared to one-way models (only requiring knowledge of the wind velocity).
机译:提出,分析和测试了数值算法,以提高气候规范动态核心的效率和可靠性。假设使用了常用的刚性盖假设,该假设允许界面对质量变化的瞬时响应。此外,水分传输被忽略,从而导致静态界面。一个主要的算法功能是通过接口数据的半隐式处理(即分区时间步长)将大气和海洋计算数值解耦。开发了用于简化连续体模型的算法,该模型保留了大气-海洋方程组的关键数学结构。;该工作开始于研究风量ux在风切变方面的线性参数化,并将方程组耦合。开发了反向欧拉(Euler)的分区变体,允许大量时间步长。通过延迟校正可以实现更高的订单精度。开发了适应非线性耦合的方法。最值得注意的是,使用几何平均法来保持无条件的稳定性。扩展了该算法,以允许子计算使用不同大小的时间步长。进行了完整的数值分析并提供了计算实验。接下来,添加了对流,包括根据风切变和温度对热通量进行非线性参数化。为大气和海洋耦合的速度-温度系统开发了一种分区算法,该算法保留了无条件的稳定性。此外,由于在气候模型中可靠地计算热传输现象的重要性,因此在这种情况下执行不确定性量化。在两个耦合参数中引入了噪声,这对稳定性起着重要作用。数值测试研究了温度,速度和平均表面温度的变化。分区方法对于线性耦合2流体问题非常有效。这些方法的扩展适用于非线性耦合,其中在通过之前对接口数据进行了适当的处理,从而产生了高效的算法。原因之一是由于其强大的稳定性能。在不依赖网格大小的时间步长限制下,收敛也成立。可以观察到,与单向模型(仅需要了解风速)相比,两向耦合(需要了解界面上的大气和海洋速度)在平均表面温度的计算中产生的不确定性较小。

著录项

  • 作者

    Connors, Jeffrey M.;

  • 作者单位

    University of Pittsburgh.;

  • 授予单位 University of Pittsburgh.;
  • 学科 Applied Mathematics.;Mathematics.;Atmospheric Sciences.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 211 p.
  • 总页数 211
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号