首页> 外文学位 >Development and validation of in vivo sensors of mitochondrial redox status.
【24h】

Development and validation of in vivo sensors of mitochondrial redox status.

机译:线粒体氧化还原状态体内传感器的开发和验证。

获取原文
获取原文并翻译 | 示例

摘要

Intracellular thiol-disulfide balance is very important for the activity of numerous enzymes and proteins that recruit cysteine residues as "thiol-switches". However, the redox balance can be disrupted by unregulated production of reactive oxygen species (ROS). Cells contain two primary redox regulatory systems that utilize thiol-disulfide redox chemistry to combat and detoxify ROS and help maintain thiol-disulfide balance: the glutathione (GSH)/glutathione disulfide (GSSG) redox couple and the reduced/oxidized thioredoxin (TRX) redox couple. Since glutathione has a relatively low redox potential and a high intracellular concentration (mM) relative to the other redox couples, it is considered to be the major thiol-disulfide redox buffer of the cell. The mitochondrion is an important compartmentalized organelle harboring numerous functions, while it is also the primary source and target of ROS. Numerous studies have shown that disruption of mitochondrial thiol redox circuits is related to cancer, neurodegenerative diseases, and aging. Therefore, knowledge of the fundamental mechanisms for maintaining thiol redox homeostasis in the mitochondria, especially a better understanding of mitochondrial GSH metabolism would aid in the development of therapies and novel drugs for treating mitochondrial diseases. However, the mechanisms are still poorly understood so far, and even less has been studied to compare the thiol redox states of the two mitochondrial sub-compartments. Previous researchers have developed a redox sensitive yellow fluorescence protein (rxYFP) which can specifically measure the in vivo redox state of the cytosolic GSH:GSSG. In this study we have modified rxYFP for expression in the mitochondrial intermembrane space (IMS) and matrix of the yeast Saccharomyces cerevisiae in order to compare thiol redox differences between these compartments and the cytosol. It was demonstrated that IMS is considerably more oxidizing than the cytosol or matrix. These sensors' dynamic response to an exogenous oxidant and reductant were confirmed, and their responses to specific redox changes that are localized to subcellular compartments were verified by manipulating the subcellular redox status using GSH reductase mutants. These studies indicate that redox control is independently regulated within these individual compartments in the cell. Moreover, to further optimize and verify the usage of these redox sensors, the effects of different factors on the redox measurements were investigated and the methodology were optimized and summarized as well. These studies represent an important step towards understanding the mechanisms of mitochondrial thiol redox homeostasis.
机译:细胞内硫醇-二硫键的平衡对于募集半胱氨酸残基作为“硫醇开关”的多种酶和蛋白质的活性非常重要。但是,氧化还原平衡可能会由于活性氧(ROS)的产生不受监管而被破坏。细胞包含两个主要的氧化还原调节系统,它们利用巯基-二硫键的氧化还原化学作用来对抗和解毒ROS,并帮助维持巯基-二硫键的平衡:谷胱甘肽(GSH)/谷胱甘肽二硫化物(GSSG)氧化还原对和还原/氧化的硫氧还蛋白(TRX)氧化还原一对。由于谷胱甘肽相对于其他氧化还原对具有较低的氧化还原电位和较高的细胞内浓度(mM),因此被认为是细胞中主要的巯基-二硫化物氧化还原缓冲液。线粒体是一个重要的区室细胞器,具有多种功能,同时也是ROS的主要来源和靶标。大量研究表明,线粒体硫醇氧化还原回路的破坏与癌症,神经退行性疾病和衰老有关。因此,了解线粒体中维持硫醇氧化还原稳态的基本机制,尤其是对线粒体GSH代谢的更好理解将有助于治疗线粒体疾病的疗法和新药的开发。但是,到目前为止,对这种机理的了解还很少,而且对两个线粒体亚区室的硫醇氧化还原状态进行比较的研究还很少。先前的研究人员已经开发了一种对氧化还原敏感的黄色荧光蛋白(rxYFP),可以特异性地测量胞质GSH:GSSG的体内氧化还原状态。在这项研究中,我们已经修改了rxYFP以在酿酒酵母酵母的线粒体膜空间(IMS)和基质中表达,以比较这些区室和细胞质之间的巯基氧化还原差异。结果表明,IMS比细胞质或基质的氧化能力强得多。确认了这些传感器对外源氧化剂和还原剂的动态响应,并通过使用GSH还原酶突变体操纵亚细胞氧化还原状态,验证了它们对局部亚细胞区室特定氧化还原变化的响应。这些研究表明,氧化还原控制是在细胞中这些单独的区室中独立调节的。此外,为了进一步优化和验证这些氧化还原传感器的使用,研究了不同因素对氧化还原测量的影响,并对方法进行了优化和总结。这些研究代表了了解线粒体硫醇氧化还原稳态的重要步骤。

著录项

  • 作者

    Dong, Lixue.;

  • 作者单位

    University of South Carolina.;

  • 授予单位 University of South Carolina.;
  • 学科 Biochemistry.
  • 学位 M.S.
  • 年度 2009
  • 页码 77 p.
  • 总页数 77
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号