首页> 外文学位 >Light-harvesting in single conjugated polymer chains and semiconductor nanocrystals.
【24h】

Light-harvesting in single conjugated polymer chains and semiconductor nanocrystals.

机译:单共轭聚合物链和半导体纳米晶体中的光收集。

获取原文
获取原文并翻译 | 示例

摘要

Light-harvesting characterizes the efficient absorption of light and subsequent transport of excitation energy to a reaction center and thus the two basic processes relevant to photovoltaics. In this work, light-harvesting is studied on the fundamental single particle level of two technologically relevant semiconducting material classes---nanocrystals and conjugated polymers. The approach allows for the identification of structure-property relations which can usually not be resolved in ensembles of the same materials.;In short, the main results comprise (1) a tool to track intramolecular energy transfer in single polymer chains; (2) aspects for a better understanding of intrachain energy transfer; (3) the confirmation of an oligomer-like chromophore picture in single polymer absorption which, however, demands some alterations; and (4) an all-optical classification to identify and structurally characterize subgroups of nanocrystals with favorable light-harvesting properties.;Specifically, photoluminescence excitation (PLE) spectroscopy under intraparticle energy transfer conditions is performed on semiconductor nanotetrapods and dye-endcapped polymer chains, both model light-harvesting systems. This way, the structural origin of hampered energy funneling to the tetrapod core as well as the distribution and interaction of polymer chain subunits (chromophores) is resolved, respectively. For the first time, the energetic distribution and vibronic coupling of absorbing chromophores is measured on single polymer chains. While the conventional chromophore picture can be confirmed by several excitation properties, unexpectedly broad single chain absorption, remote interchromophoric coupling, and a correlation between chromophore length and exciton funneling efficiency offer valuable experimental results leading to a better understanding of intrachain excitation energy transfer. For the study of this process as well as exciton self-trapping in single polymer chains, a new spectroscopic method is established: combined single molecule fluorescence and surface-enhanced Raman scattering (SERS) spectroscopy. A comparison of both simultaneously acquired spectral signatures in the time or frequency domain can track excited state relaxation within a single polymer chain. The work is complemented by a simple screening method to identify substrates which are well suited for SERS.
机译:集光表征了光的有效吸收以及随后激发能量向反应中心的传输,因此表征了与光电相关的两个基本过程。在这项工作中,在两种技术上相关的半导体材料类别(纳米晶体和共轭聚合物)的基本单粒子水平上研究了光收集。该方法可以识别通常无法在相同材料的集合中解决的结构-性质关系。简而言之,主要结果包括(1)跟踪单个聚合物链中分子内能量转移的工具; (2)更好地了解链内能量转移的方面; (3)在单一聚合物吸收中确认了类似低聚物的生色团图像,但是需要进行一些改变; (4)全光学分类,以鉴定和结构表征具有良好光收集特性的纳米晶体的亚组。具体而言,在粒子内能量转移条件下,对半导体纳米四脚架和染料封端的聚合物链进行光致发光激发(PLE)光谱,两种模型都采用光收集系统。通过这种方式,分别解决了阻碍能量流向四脚架核心的结构起源以及聚合物链亚基(发色团)的分布和相互作用。第一次,在单个聚合物链上测量了吸收发色团的能量分布和振动耦合。尽管传统的发色团图片可以通过几种激发特性得到证实,但出乎意料的宽单链吸收,远程发色团间耦合以及发色团长度和激子漏斗效率之间的相关性提供了有价值的实验结果,有助于更好地理解链内激发能。为了研究此过程以及单个聚合物链中的激子自陷,建立了一种新的光谱方法:结合单分子荧光和表面增强拉曼散射(SERS)光谱。在时域或频域中同时获取的两个光谱特征的比较可以跟踪单个聚合物链内的激发态弛豫。通过简单的筛选方法来补充这项工作,以鉴定出非常适合SERS的底物。

著录项

  • 作者

    Walter, Manfred J.;

  • 作者单位

    The University of Utah.;

  • 授予单位 The University of Utah.;
  • 学科 Condensed matter physics.;Optics.;Molecular physics.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 173 p.
  • 总页数 173
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号