首页> 外文学位 >Myoelectric control techniques for a rehabilitation robot.
【24h】

Myoelectric control techniques for a rehabilitation robot.

机译:康复机器人的肌电控制技术。

获取原文
获取原文并翻译 | 示例

摘要

The work presented in this thesis consists primarily of two projects. The first project was the design and development of a real time myoelectric controller using a pattern recognition scheme. The myoelectric control scheme controlled three degrees of freedom which included elbow flexion and extension, wrist pronation and supination, and hand grasping and releasing for a robotic arm in the Biomechatronics Learning Lab at the Rochester Institute of Technology. According to the knowledge of the author, no work has ever combined these three DOF. The design started with an offline analysis of common windows and features found in the literature. Data was obtained from ten healthy subjects and was tested to find the optimal window and feature scheme which provided for the highest classification accuracy. The highest classification accuracy was 94.92% for a 250ms windowing scheme with three autoregressive features from a fourth order model. The classifier used in all of the testing was a linear discriminate analysis. The real time myoelectric control scheme was implemented in Labview and used an adjacent windowing scheme of 250ms with AR features. The same ten healthy subjects were then used to test the real time myoelectric control scheme. The average classification accuracy during the real time testing was 89.52%. The real time myoelectric control scheme was then adapted to a subject with Central Cord Syndrome. He was first tested with single degree of freedom controllers and obtained classification accuracies of 100%, 95.24%, and 80.95% for elbow, hand, and wrist controllers respectively. When tested with the full three degrees of freedom controller, the subject achieved a classification accuracy of 68.25%.;The second project involved the theoretical design of a myoelectric controller based on a time delayed neural network. Advantages to this design were that the EMG used for this control scheme were based on complex reaching motions and allowed for the control of multiple degrees of freedom at once. These two advantages are not currently offered in myoelectric control schemes which typically control one degree of freedom at a single instance in time and are based on repeatable isometric contractions. The algorithm was based on previous work completed by Au and Kirsch. Their optimal parameters used a total delay of 875ms and 125ms as the interval of delay. The total delay suggested by Au and Kirsch is not possible for a real time scheme. This work tested for the feasibility of using the time delayed neural network as a real time myoelectric control scheme by decreasing the total delay. Five subjects were used in this work. All of the time delayed neural networks were trained using multiple types of motion and speeds to make the TDNNs robust. The first subject was tested with different TDNNs that used total delays of 900ms, 600ms, and 300ms, delay intervals of 50ms, 100ms, and 150ms, and hidden layer neurons of 10, 20, 30, and 40. The optimal parameters of a 300ms total delay with a 100ms delay interval, and a hidden layer of 10 neurons resulted in an average error of 15.7° for the first subject. These parameters were then used to test the data from the remaining subjects. Using the optimal parameters an average error of 19.0° for all subjects was obtained. Previous errors reported by Au and Kirsch were on the order of 20°. This work showed that the total time delay could be decreased. The next step for this work would be to implement the algorithm in real time or make attempts to decrease the output error.
机译:本文提出的工作主要包括两个项目。第一个项目是使用模式识别方案设计和开发实时肌电控制器。肌电控制方案控制了三个自由度,其中包括罗切斯特理工学院生物机电一体化学习实验室中的肘部弯曲和伸展,腕部内旋和旋后以及机器人手臂的手握紧和释放。根据作者的知识,还没有任何工作将这三个自由度组合在一起。该设计首先对文献中常见的窗口和功能进行了脱机分析。从十名健康受试者中获得数据,并进行测试以找到最佳的窗口和特征方案,以提供最高的分类精度。 250毫秒窗方案具有四阶模型的三个自回归特征,最高分类精度为94.92%。所有测试中使用的分类器是线性判别分析。实时肌电控制方案是在Labview中实现的,并使用了具有AR功能的相邻250ms窗口化方案。然后使用相同的十名健康受试者测试实时肌电控制方案。实时测试期间的平均分类准确度为89.52%。然后将实时肌电控制方案调整为患有中枢脊髓综合症的受试者。他首先使用单自由度控制器进行了测试,并获得了肘部,手部和腕部控制器的分类精度分别为100%,95.24%和80.95%。当使用完整的三个自由度控制器进行测试时,受试者的分类精度为68.25%。;第二个项目涉及基于时延神经网络的肌电控制器的理论设计。该设计的优点在于,用于此控制方案的EMG基于复杂的到达运动,并允许一次控制多个自由度。目前在肌电控制方案中没有提供这两个优点,该方案通常在单个实例上及时地控制一个自由度,并且基于可重复的等距收缩。该算法基于Au和Kirsch完成的先前工作。他们的最佳参数使用总延迟875ms和125ms作为延迟间隔。 Au和Kirsch建议的总延迟对于实时方案是不可能的。这项工作通过减少总延迟来测试使用时延神经网络作为实时肌电控制方案的可行性。这项工作使用了五个主题。所有时间延迟神经网络都使用多种类型的运动和速度进行了训练,以使TDNN具有鲁棒性。使用不同的TDNN对第一个受试者进行了测试,这些TDNN使用了900ms,600ms和300ms的总延迟,50ms,100ms和150ms的延迟间隔以及10、20、30和40的隐藏层神经元。300ms的最佳参数总延迟为100毫秒的延迟间隔,并且隐藏的10个神经元层导致第一个对象的平均误差为15.7°。然后将这些参数用于测试其余受试者的数据。使用最佳参数,所有受试者的平均误差为19.0°。 Au和Kirsch报告的先前误差约为20°。这项工作表明总的时间延迟可以减少。这项工作的下一步将是实时实施该算法或尝试减少输出错误。

著录项

  • 作者

    Smith, Alan.;

  • 作者单位

    Rochester Institute of Technology.;

  • 授予单位 Rochester Institute of Technology.;
  • 学科 Engineering Biomedical.;Engineering Electronics and Electrical.
  • 学位 M.S.
  • 年度 2009
  • 页码 281 p.
  • 总页数 281
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 公共建筑;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号