首页> 外文学位 >Nanostructured thin films for organic photovoltaic cells and organic light-emitting diodes.
【24h】

Nanostructured thin films for organic photovoltaic cells and organic light-emitting diodes.

机译:用于有机光伏电池和有机发光二极管的纳米结构薄膜。

获取原文
获取原文并翻译 | 示例

摘要

Achieving efficient organic optoelectronic devices, such as organic photovoltaic (OPV) cells and organic light-emitting diodes (OLEDs), relies on the understanding of the formation of various organic nanostructures as well as the fundamental of physical processes in device operation. The research presented in this thesis systematically investigates the controlled growth of organic nanostructure through different approaches and their relationship to OPV cell performance. Moreover, new materials and device structure are explored to achieve efficient OLEDs, which also provide further insight of the physical processes governing the performance of these devices.;We first investigated the phase separation process in a molecular mixed donor-acceptor (D -- A) bulk heterojunction (BHJ) composed of pentacene and C60 suing a combination of experimental and computational approaches. Both experiment characterization and the MD simulation reveals that strong aggregation of pentacene exists in the pentacene:C60 mixtures due to the strong pi -- pi interaction among pentacene molecules. By controlling the processing conditions to suppress the pentacene aggregation to nanoscale leads to higher device efficiency as the more photogenerated excitons are able to reach the D -- A interface and contribute to the photocurrent. To circumvent the limits on phase separated D -- A mixed heterojunction, an interdigitated D -- A BHJ is synthesized through the oblique angle deposition (OAD) of copper phthalocyanine (CuPc). The morphology of CuPc nanorod arrays grown under the OAD process can be controlled by careful selection of the processing conditions, and we have achieved a high density, vertically aligned, polycrystalline CuPc nanorod array with nanorod size as small as 20-30 nm. Successful infiltration of [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) into the optimized CuPc nanorod arrays has resulted in doubling of the power conversion efficiency of the OPV cell over planar heterojunction device based on the same D -- A materials.;We also show that the efficiency of a deep-blue phosphorescent OLED (PHOLED) can be significantly enhanced by improving the exciton and charge confinement in the multilayer organic stack. A peak external quantum efficiency of (20 +/- 1) % is achieved, which approaches the theoretical maximum of PHOLED without specific out-coupling mechanisms. We further demonstrate PHOLEDs with enhanced power efficiency by using the p-i- n device structures to reduce driving voltage and achieved a maximum of (14 +/- 1) lm/W and (12 +/- 1) lm/W at a luminance of 100 cd/m 2. Moreover, an ultra low turn-on voltage of ∼ 1.3 V is observed in an orange-emitting polymer light-emitting diode (PLED) using ZnO nanoparticles as the electron injection layer. An Auger-assisted electron injection mechanism is proposed to explain the low turn-on voltage. The novel ZnO nanoparicles electron injection layer opens a new way to reduce driving voltage in PLED. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)
机译:实现有效的有机光电器件,例如有机光伏(OPV)电池和有机发光二极管(OLED),取决于对各种有机纳米结构的形成以及器件操作中物理过程基础的理解。本文提出的研究系统地研究了通过不同方法控制的有机纳米结构的生长及其与OPV细胞性能的关系。此外,还探索了新的材料和器件结构来实现高效的OLED,这也为控制这些器件性能的物理过程提供了进一步的见识。;我们首先研究了分子混合供体-受体(D-A )由并五苯和C60组成的本体异质结(BHJ),结合了实验方法和计算方法。实验表征和MD模拟均表明,由于并五苯分子之间的强pi-pi相互作用,并五苯:C60混合物中存在并五苯的强聚集。通过控制加工条件以将并五苯聚合抑制到纳米级,可以提高装置效率,因为更多的光生激子能够到达D-A界面并有助于光电流。为了规避相分离D-混合异质结的限制,通过铜酞菁铜(CuPc)的斜角沉积(OAD)合成了叉指型D-BHJ。可以通过仔细选择加工条件来控制在OAD工艺下生长的CuPc纳米棒阵列的形态,并且我们已经获得了纳米棒尺寸小至20-30 nm的高密度,垂直排列的多晶CuPc纳米棒阵列。 [6,6]-苯基-C61-丁酸甲酯(PCBM)成功渗透到优化的CuPc纳米棒阵列中,使得基于相同D-的平面异质结器件上的OPV电池的功率转换效率翻了一番一种材料;我们还表明,深蓝色磷光OLED(PHOLED)的效率可以通过改善多层有机堆叠中的激子和电荷限制来显着提高。达到了(20 +/- 1)%的峰值外部量子效率,该值接近PHOLED的理论最大值,而没有特定的外耦合机制。我们进一步展示了通过使用pi-n器件结构来降低驱动电压并提高功率效率的PHOLED,该器件在亮度为时达到(14 +/- 1)lm / W和(12 +/- 1)lm / W的最大值。 100 cd / m 2.此外,在使用ZnO纳米粒子作为电子注入层的橙色发光聚合物发光二极管(PLED)中,观察到约1.3 V的超低开启电压。提出了俄歇辅助电子注入机制来解释低开启电压。新型ZnO纳米粒子电子注入层为降低PLED的驱动电压开辟了一条新途径。 (可通过佛罗里达大学图书馆网站获得本文的全文。请检查http://www.uflib.ufl.edu/etd.html)

著录项

  • 作者

    Zheng, Ying.;

  • 作者单位

    University of Florida.;

  • 授予单位 University of Florida.;
  • 学科 Engineering Electronics and Electrical.;Engineering Materials Science.;Energy.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 172 p.
  • 总页数 172
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号