首页> 外文学位 >EMG-driven modeling: Forward simulation and knee-ligament loading simulation.
【24h】

EMG-driven modeling: Forward simulation and knee-ligament loading simulation.

机译:EMG驱动的建模:正向仿真和膝盖韧带加载仿真。

获取原文
获取原文并翻译 | 示例

摘要

The human neuromusculoskeletal system is complicated and different muscles are finely coordinated to accomplish various tasks. Electromyography (EMG) includes real-time information about the electrical activity of a specific muscle. Different EMG-driven biomechanical models have been developed to estimate muscle forces. They can implicitly account for a subject's individual muscle activation patterns and help reveal underlying neuromuscular control strategies. However, these EMG-driven models have not been applied to study patients with neurological disorder, or finish forward simulation and knee-ligament loading simulation.The first study of this dissertation reviewed how EMG signal is generated, measured and processed, presented an EMG-driven model that could be used as a tool to estimate muscle forces. It provided a comprehensive description of the model, and applied the model in the knee and ankle joint of healthy subjects during gait.The second study of this dissertation used an EMG-driven model to estimate muscle forces and joint moments of patients following stroke during walking. The EMG-driven model did predict the ankle joint moment for patients following stroke, despite the variability in muscle activation patterns and joint moments between trials. The predictable ability of the EMG-driven model demonstrated that it could be used to estimate muscle forces and joint kinetics in patients with neurological disorder.The third study of this dissertation developed a forward dynamics model that incorporated an EMG-driven model. The model used EMGs, kinematics and ground reaction force data as inputs, and calculated muscle forces, as well as joint torques to drive a forward simulation during the stance phase of normal gait for five healthy subjects. The muscle forces calculated from the EMG-driven model were used to drive the knee and ankle joint. Therefore this EMG-driven approach has the advantage of identifying different muscle activation patterns, and it has great potential in applications to the rehabilitation of patients with neurological disorders.The fourth study of this dissertation developed a biomechanical model using EMG, joint position and force plate data as inputs to estimate anterior tibial translation (ATT), anterior shear forces and ligament loading in the healthy and anterior cruciate ligament (ACL)-deficient knee joint during gait. The model predicted that ATT increased throughout stance phase for the ACL-deficient knee compared with the healthy knee. The medial collateral ligament functioned as the main passive restraint to anterior shear force in the ACL-deficient knee. The calculated results were consistent with previous in vitro and in vivo studies, and this gave us confidence that our model could be used to study how ACL-deficient knees compensate for the loss of the ACL using abnormal muscle activation strategies. Posterior inclination angle of the tibial plateau was found to be a crucial parameter in determining knee mechanics, and increasing the tibial slope in our model would increase the resulting ATT and ligament forces in both healthy and ACL-deficient knees.The findings of this dissertation provide insight on neuromuscular control strategies of healthy subjects, post-stroke patients and patients without an ACL. The models have great potential in studying the outcome of different rehabilitation protocols on patients with neurological disorder.
机译:人的神经肌肉骨骼系统很复杂,不同的肌肉可以很好地协调以完成各种任务。肌电图(EMG)包含有关特定肌肉电活动的实时信息。已经开发了不同的EMG驱动的生物力学模型来估计肌肉力量。他们可以隐含地解释受试者的个体肌肉激活模式,并帮助揭示潜在的神经肌肉控制策略。然而,这些EMG驱动模型尚未用于研究神经系统疾病患者,也未用于完成前向模拟和膝关节韧带负荷模拟。本文的第一项研究回顾了EMG信号的产生,测量和处理方式,提出了一种EMG-驱动模型,可以用作估计肌肉力量的工具。它提供了该模型的全面描述,并将该模型应用于健康受试者步态中的膝盖和踝关节。本论文的第二项研究使用EMG驱动模型来估计患者在行走过程中中风后的肌肉力量和关节力矩。尽管肌电激活模式和试验之间的关节力矩存在差异,但EMG驱动的模型的确能预测卒中后患者的踝关节力矩。 EMG驱动模型的可预测能力证明它可用于估计神经系统疾病患者的肌肉力量和关节动力学。本论文的第三项研究建立了一个包含EMG驱动模型的前向动力学模型。该模型使用EMG,运动学和地面反作用力数据作为输入,并计算了肌肉力量以及关节扭矩,以在正常步态的站立阶段对五名健康受试者进行正向仿真。根据肌电图驱动模型计算出的肌肉力用于驱动膝盖和踝关节。因此,这种以肌电图为驱动的方法具有识别不同肌肉激活方式的优势,在神经系统疾病患者的康复中具有广阔的应用前景。本论文的第四项研究开发了一种利用肌电图,关节位置和力板的生物力学模型。数据作为估计步态期间健康和前交叉韧带(ACL)缺损的膝关节中胫骨前平移(ATT),前剪切力和韧带负载的输入。该模型预测,与健康膝关节相比,ACL缺陷膝关节的整个站立阶段的ATT都会增加。内侧副韧带是ACL缺陷型膝关节前剪切力的主要被动约束。计算结果与先前的体外和体内研究一致,这使我们充满信心,我们的模型可用于研究ACL缺陷膝盖如何使用异常的肌肉激活策略来补偿ACL的丧失。胫骨平台的后倾角是决定膝关节力学的关键参数,在我们的模型中增加胫骨斜率会增加健康和ACL缺陷膝关节的ATT和韧带力。对健康受试者,中风后患者和无ACL患者的神经肌肉控制策略的见解。该模型在研究神经系统疾病患者不同康复方案的结果方面具有巨大潜力。

著录项

  • 作者

    Shao, Qi.;

  • 作者单位

    University of Delaware.;

  • 授予单位 University of Delaware.;
  • 学科 Health Sciences Rehabilitation and Therapy.Engineering Biomedical.
  • 学位 Ph.D.
  • 年度 2010
  • 页码 151 p.
  • 总页数 151
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号