首页> 外文学位 >Fluxless bonding of thermal expansion mismatch materials.
【24h】

Fluxless bonding of thermal expansion mismatch materials.

机译:热膨胀失配材料的无助焊剂粘合。

获取原文
获取原文并翻译 | 示例

摘要

Fluxless bonding techniques have been successfully developed to bond thermal expansion mismatch materials which are materials with different coefficients of thermal expansion (CTE). In the first study, 2" silicon (Si) wafers are bonded to silicon wafers using tin-rich tin-silver (Sn-Ag) solders. Si wafers are also bonded to molybdenum (Mo) substrates using similar solder design. Nearly void-free joints are achieved without using any flux. The joints consist of 97 at. % Sn with balance being Ag and gold (Au). The solder joints are thus lead-free (Pb-free).;Pure Ag joints between Si chips and copper (Cu) substrates are successfully produced by directing bonding method at 250°C in 100 millitor vacuum. The bonding temperature is much lower than Ag melting point of 961°C. Nothing is used between Ag and Cu. This is the first time Ag-Cu direct bonding is ever achieved at such a low temperature. Au-coated Si chips are directly bonded to Ag. Two configurations, die attachment and flip-chip interconnect, are demonstrated. For die attachment, Si chip, Ag foil, and Cu substrate are bonded together in one step. As to flip-chip interconnect, Si chips having an array of 10x10 electroplated Ag bumps are directly bonded to Cu substrates. During the bonding process, there is absolutely no molten phase involved. The joints are pure Ag without any intermetallic compound (IMC). Any reliability issues associated with IMCs, thus, are eliminated.;In developing bonding processes using silver-indium (Ag-In) system, reaction of In and Ag during the electroplating process is investigated. It is found that the plated In atoms reacts with Ag to form AgIn2 at room temperature. After the sample is stored at room temperature in air for one day, AgIn 2 grows to 5mum in thickness. With longer storage time, AgIn 2 continues to grow until all indium atoms are consumed. Based on the intermetallic reaction discovered, a fluxless bonding process has been developed between Si chips and Cu substrates using electroplated Ag and In layers. After many bonding experiments, I realize that the success of producing a joint relates to microstructure of the Ag layer. Coarsened Ag grains slow down the Ag2In growth rate. Consequently, the molten phase, (L), can stay at molten state with sufficient time to react with the Ag layer on Si chip to produce a joint. It is worth pointing out that Si and Cu have very large CTE mismatch. Bonding large Si chips to Cu substrates have always been a great challenge in electronic industries.;In another project of bonding CTE mismatch materials, large Si chips are bonded to commercial ceramic packaging using Au80Sn20 eutectic solder. During the reflow, Au80Sn20 solder melts and dissolves Au and Ni layers originally on the ceramic packages. The final alloy joint consists of (Au,Ni)Sn and (Au,Ni) 5Sn compounds. Following this success, glass lids are hermetically sealed on ceramic packages using Sn-rich Sn-Au alloy. Helium leakage rate is measured and confirmed to meet the leak-free criterion specified in MIL-STD-883F.;In bonding Ni to GaN-based LED wafers for building vertical LED structure, 60mum thick nickel layer is electroplated to the GaN/InGaN/GaN stack that is originally grown on Si wafers. Si is then removed using lapping and etching processes so that Ni layer becomes the new substrate. The etching rate is very sensitive to Si orientation. Thus, other thinning methods independent of Si orientation should be developed.;The fluxless bonding technology presented in this dissertation offers the electronic industry new and alternative ways to bond materials with large mismatch in CTE without using any flux. Without flux residues, joint quality and reliability improve. The fluxless advantage is particularly valuable in various applications such as biomedical devices, microelectromechanical system (MEMS) devices, microwave devices, photonic devices, and sensor devices where the use of flux is prohibited.
机译:无助焊剂粘合技术已经成功开发,可以粘合热膨胀失配材料,该材料是具有不同热膨胀系数(CTE)的材料。在第一个研究中,使用富锡锡银(Sn-Ag)焊料将2英寸硅(Si)晶片粘合到硅晶片。也使用相似的焊料设计将2英寸硅(Si)晶片粘合到钼(Mo)衬底。在不使用任何助焊剂的情况下实现了自由连接,该连接由97 at。%的Sn组成,其余部分为Ag和金(Au)。因此,焊点无铅(无Pb)。铜(Cu)基板是通过在250摄氏度,100毫托真空中直接键合方法成功生产的,其键合温度远低于熔点961°C的银熔点,银和铜之间没有使用任何银,这是银的首次应用-在如此低的温度下可以实现铜的直接键合,将镀金的Si芯片直接键合到Ag上,演示了两种配置:芯片附着和倒装芯片互连;对于芯片附着,有Si芯片,Ag箔和Cu一步将基片粘合在一起。对于倒装芯片互连,具有10x10 el阵列的Si芯片外延的Ag凸点直接结合到Cu衬底上。在粘接过程中,绝对不涉及熔融相。接头是纯银,没有任何金属间化合物(IMC)。因此,消除了与IMC相关的任何可靠性问题。在使用银-铟(Ag-In)系统开发键合工艺时,研究了电镀过程中In和Ag的反应。发现镀的In原子在室温下与Ag反应形成AgIn2。样品在室温下在空气中存放一天后,AgIn 2的厚度增长到5μm。随着更长的存储时间,AgIn 2继续生长直到所有铟原子被消耗掉。基于发现的金属间反应,已经开发了使用电镀Ag和In层的Si芯片和Cu基板之间的无助熔剂键合工艺。经过多次键合实验,我认识到制造接头的成功与银层的微观结构有关。粗大的银晶粒会减慢Ag2In的生长速度。因此,熔融相(L)可以在熔融状态下停留足够的时间以与Si芯片上的Ag层反应以产生接合。值得指出的是,Si和Cu具有非常大的CTE不匹配。在电子行业中,将大型Si芯片粘合到Cu基板上一直是一个巨大的挑战。在另一个粘合CTE不匹配材料的项目中,使用Au80Sn20共晶焊料将大型Si芯片粘合到商用陶瓷包装上。在回流期间,Au80Sn20焊料熔化并溶解了最初在陶瓷封装上的Au和Ni层。最终的合金接头由(Au,Ni)Sn和(Au,Ni)5Sn化合物组成。取得成功之后,玻璃盖使用富含Sn的Sn-Au合金气密性密封在陶瓷封装上。测量并确认氦气泄漏率符合MIL-STD-883F中规定的无泄漏标准;在将Ni粘合到用于构建垂直LED结构的GaN基LED晶圆上时,将60μm厚的镍层电镀到GaN / InGaN /最初在Si晶圆上生长的GaN叠层。然后使用研磨和蚀刻工艺去除Si,以使Ni层成为新的衬底。蚀刻速率对Si取向非常敏感。因此,应开发其他与Si取向无关的薄化方法。本文提出的无助焊剂技术为电子工业提供了一种新的替代方法,可在不使用任何助焊剂的情况下粘接CTE中失配较大的材料。没有助焊剂残留,接头质量和可靠性得到改善。无通量优势在禁止使用通量的各种应用中特别有价值,例如生物医学设备,微机电系统(MEMS)设备,微波设备,光子设备和传感器设备。

著录项

  • 作者

    Wang, Pin J.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 130 p.
  • 总页数 130
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 工程材料学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号