首页> 外文学位 >Electroosmotic flow and DNA electrophoretic transport in micro/nano channels.
【24h】

Electroosmotic flow and DNA electrophoretic transport in micro/nano channels.

机译:微/纳米通道中的电渗流和DNA电泳运输。

获取原文
获取原文并翻译 | 示例

摘要

In Micro/nano fluidic systems, electrokinetic transport is a convenient method to move materials, such as water, ions and particles for fast, high-resolution and low-cost analysis and synthesis. It has wide applications to drug delivery and its control, DNA and biomolecular sensing, manipulation, the manufacture laboratories on a microchip (lab-on-a-chip) and many other areas. In the present work, electrokinetically driven fluid flow and particle transport in micro/nanoscale channels/pores with heterogeneous surface potential or converging shape are investigated theoretically and numerically.;A step change in wall potential is found to induce a recirculation region in the bulk electroosmotic flow and interesting flow structures can be achieved by manipulating the surface heterogeneous patterns. Most of the previous work on this problem is based on the Debye-Huckel approximation and the validity of Boltzmann distribution for ionic species. In the present work, ionic species distributions in the electric double layers are found to be different from the Boltzmann distribution and this deviation is more noticeable for higher applied electric field.;A mathematical model is developed to simulate the electroosmotic flow (EOF) and the transport of embedded particles in micro/nano nozzles/diffusers. Results can be used to estimate the mass transport of charged/uncharged species in micro/nano nozzles/diffusers which has a potential application in transdermal drug delivery. The model is extended to investigate the DNA electrophoretic transport through a converging nanopore for the purpose of DNA sequencing. The flow field, the resistive forces acting on the DNA, the DNA velocity and the ionic current through the nanopore are calculated numerically based on the Poisson-Boltzmann theory and the lubrication approximation. It is found that the electroosmotic flow inside the nanopore plays an important role in the DNA translocation process and the resulting viscous drag decreases the effective driving force acting on the DNA substantially. Entropic forces, used to be considered as the main resistive forces in previous works, are found to be small and negligible. Modeling and simulations are validated by the good agreement with the experimental data for the tethering force and the DNA velocity.
机译:在微/纳米流体系统中,电动传输是一种便捷的方法,可移动材料(例如水,离子和颗粒)进行快速,高分辨率和低成本的分析和合成。它在药物输送及其控制,DNA和生物分子传感,操纵,微芯片(芯片实验室)上的制造实验室以及许多其他领域具有广泛的应用。在目前的工作中,从理论和数值上研究了电动驱动的流体在微/纳米尺度的通道/孔中的流动和颗粒传输,这些通道/孔具有不均匀的表面电势或会聚的形状。;发现壁电势的阶跃变化会引起整体电渗流的再循环区域流动和有趣的流动结构可以通过操纵表面异质图案来实现。关于此问题的大多数先前工作都是基于Debye-Huckel近似和玻尔兹曼分布对离子物种的有效性。在目前的工作中,发现双电层中的离子种类分布与Boltzmann分布不同,并且对于更高的施加电场,该偏差更加明显。;建立了数学模型来模拟电渗流(EOF)和电渗流。微/纳米喷嘴/扩散器中嵌入颗粒的运输。结果可用于估计微/纳米喷嘴/扩散器中带电/不带电物质的质量传输,这在透皮药物输送中具有潜在的应用。扩展该模型以研究通过汇聚的纳米孔进行的DNA电泳运输,以进行DNA测序。基于泊松-玻尔兹曼理论和润滑近似,对流场,作用在DNA上的阻力,DNA速度和通过纳米孔的离子流进行了数值计算。发现纳米孔内部的电渗流在DNA移位过程中起重要作用,并且所产生的粘性阻力实质上降低了作用在DNA上的有效驱动力。以前被认为是主要阻力的熵力很小,可以忽略不计。通过与束缚力和DNA速度的实验数据的良好一致性来验证建模和仿真。

著录项

  • 作者

    Chen, Lei.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 271 p.
  • 总页数 271
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号