首页> 外文学位 >Nanomechanical transduction of molecular interactions on microcantilevers for biochemical detection and diagnostics.
【24h】

Nanomechanical transduction of molecular interactions on microcantilevers for biochemical detection and diagnostics.

机译:在微悬臂上进行分子相互作用的纳米机械转导,用于生化检测和诊断。

获取原文
获取原文并翻译 | 示例

摘要

There is a strong demand for a reliable detection platform that can provide the benefits of enhanced sensitivity and selectivity with greater simplicity and cost-effectiveness. The new generations of biosensors also require microfabricated platforms with integrated biologically sensitive components for specific and quantitative detection of analytes in a miniaturized format as well as capabilities for label-free detection and massive parallelization.;It has been unambiguously demonstrated that the molecular binding-induced surface stress can be used to monitor specific biochemical binding events and kinetics in real-time with high sensitivity, representing the promising potential for nanomechanical sensors. The fundamental validation of the receptor immobilization and target binding as well as the transduction and quantitative detection of such molecular recognition events taking place on microcantilevers are demonstrated utilizing the optical approach for monitoring the cantilever deflection. The label-free detection of cholera toxin using microcantilevers functionalized with ganglioside-Nanodiscs is demonstrated as a new strategy for immobilizing receptors on microcantilevers.;The microcantilever-based sensors, however, require a new paradigm for signal transduction and detection beyond the optical method that supports the unique multiplexing capability by operating a large array of cantilevers with means for simple and accurate readout. Hence, a new electrical readout mechanism comprising a microcantilever array with MOSFETs embedded in the high stress region of the microcantilevers is developed, which provides label- and optics-free signal transduction mechanism.;In this work, significant strides have been made towards the MOSFET-microcantilever detection approach. The process and device simulations for embedded-MOSFETs are performed to optimize process parameters and establish guidelines for device design and fabrication. Various designs of MOSFET-embedded microcantilevers are evaluated to validate their performance and the bending-induced change in drain current is experimentally verified and analyzed. Furthermore, model systems are employed to assess and confirm the capability for detecting biomolecules.;The MOSFET-embedded microcantilever platform meets the necessary criteria for creating a widely deployable multiplexed detection system that can be integrated into a miniaturized device, representing the realistic prospects for various applications spanning through many fields including biological and chemical sensing, inexpensive diagnostics systems for healthcare, point-of-use environmental monitoring, and detection systems for biodefense.
机译:迫切需要一种可靠的检测平台,该平台可提供具有更高的简便性和成本效益的增强的灵敏度和选择性。新一代生物传感器还需要具有集成的生物敏感组件的微型平台,以微型化形式对定量分析物进行特异性和定量检测,以及无标记检测和大规模平行化的能力。表面应力可用于以高灵敏度实时监测特定的生化结合事件和动力学,这代表了纳米机械传感器的巨大潜力。利用光学方法监测悬臂挠度,证明了受体固定和靶标结合以及在微悬臂上发生的此类分子识别事件的转导和定量检测的基本验证。使用神经节苷脂-纳米圆盘功能化的微悬臂梁对霍乱毒素进行无标签检测已被证明是一种将受体固定在微悬臂梁上的新策略。然而,基于微悬臂梁的传感器需要一种新的信号转导和检测范式,而光学方法不仅如此通过操作大量的悬臂以及简单而准确的读取方法,可以支持独特的多路复用功能。因此,开发了一种新的电读出机制,该机制包括在微悬臂梁的高应力区域内嵌有MOSFET的微悬臂阵列,可提供无标签和无光学信号的信号转导机制。 -微悬臂梁检测方法。执行嵌入式MOSFET的工艺和器件仿真,以优化工艺参数并建立器件设计和制造指南。对MOSFET嵌入式微悬臂梁的各种设计进行了评估,以验证其性能,并对弯曲引起的漏极电流变化进行了实验验证和分析。此外,采用模型系统来评估和确认检测生物分子的能力。MOSFET嵌入式微悬臂平台满足创建可广泛部署的多路复用检测系统的必要标准,该系统可以集成到小型设备中,代表了各种现实的前景。应用范围涵盖许多领域,包括生物和化学传感,廉价的医疗保健诊断系统,使用点环境监测以及生物防御检测系统。

著录项

  • 作者

    Tark, Soo-Hyun.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Engineering Materials Science.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 181 p.
  • 总页数 181
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号