首页> 外文学位 >Characterization of the hERG potassium channels channel activation gate region.
【24h】

Characterization of the hERG potassium channels channel activation gate region.

机译:hERG钾离子通道通道激活门区域的表征。

获取原文
获取原文并翻译 | 示例

摘要

hERG K+ channels mediate cardiac repolarization and bind drugs that can cause acquired long QT syndrome and life-threatening arrhythmias. Drugs bind in the vestibule formed by the S6 transmembrane domain, which also contains the activation gate that traps drugs in the vestibule and contributes to their efficacy of block. Although drug-binding residues have been identified, little is known about the roles of specific S6 residues in gating. My thesis work aimed to determine the location of the hERG activation gate and to elucidate the contribution of individual amino acids to the structure of the gate region. Cysteine mutations were introduced into the hERG channel S6 domain and mutational effects on the steady-state distribution and kinetics of transitions between the closed and open states were measured. Energy-minimized molecular models based on the rKv1.2 crystal structure (open state) and MlotiK1 and KcsA (closed state) provided structural contexts for evaluating mutant residues. The majority of mutations slowed deactivation, shifted conductance-voltage curves to more negative potentials or conferred a constitutive conductance over voltages that normally cause the channel to close. Multiple substitutions of chemically distinct amino acids were made at position V659, which is one position away by homology from the Shaker gate. Kinetic and molecular modeling results suggested that, upon closing, the native V659 side chain moves into a hydrophobic pocket of defined size but likely does not form the occluding gate itself. At the most intracellular extreme of the S6 region, Q664, Y667 and S668 were especially sensitive and together formed a ringed domain that occludes the pore in the closed state model. Further mutagenesis at position Q664 resulted in multiple channels showing constitutive conductance over negative potentials, consistent with a role in gating. Investigation of S660C channels in excised macropatches showed a dramatic current decrease upon excision into the oxidizing bath environment. This is consistent with formation of a spontaneous disulfide bond which blocks current flow and suggests S660 side chains contribute to the gate structure. Together, these results suggest the hERG activation gate may be doubly closed in nature, formed by the side chains of S660 and Q664.
机译:hERG K +通道介导心脏复极化并结合可能导致获得性QT综合征和危及生命的心律不齐的药物。药物结合在S6跨膜结构域形成的前庭中,S6跨膜结构域还包含将药物捕获在前庭中并有助于其阻断功效的激活门。尽管已鉴定出药物结合残基,但对特定S6残基在门控中的作用知之甚少。我的论文旨在确定hERG激活门的位置,并阐明单个氨基酸对门区域结构的贡献。将半胱氨酸突变引入hERG通道S6结构域,并测量对稳态分布的突变效应以及在闭合和开放状态之间转变的动力学。基于rKv1.2晶体结构(开放状态)以及MlotiK1和KcsA(闭合状态)的能量最小化分子模型为评估突变残基提供了结构背景。大多数突变会减慢钝化速度,将电导-电压曲线移动到更多的负电位,或者在通常导致通道关闭的电压上赋予本构电导。在V659位置进行了化学上不同的氨基酸的多次取代,该位置距摇床的同源性为一个位置。动力学和分子建模结果表明,闭合时,天然V659侧链会移动到定义大小的疏水性口袋中,但可能不会形成闭塞门本身。在S6区域的细胞内最末端,Q664,Y667和S668尤其敏感,并共同形成了一个环状结构域,该结构域在封闭状态模型中阻塞了孔。 Q664位置的进一步诱变导致多个通道在负电位上显示出本构电导,与门控作用一致。对切​​下的大斑块中S660C通道的研究表明,切入氧化浴环境后电流急剧下降。这与自发的二硫键的形成相一致,该自发的二硫键会阻止电流流动,并表明S660侧链有助于栅极结构。总之,这些结果表明,hERG激活门可能实际上是由S660和Q664的侧链形成的双关。

著录项

  • 作者

    Wynia Smith, Sarah L.;

  • 作者单位

    The University of Wisconsin - Madison.;

  • 授予单位 The University of Wisconsin - Madison.;
  • 学科 Biology Molecular.;Biophysics Medical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:29

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号