首页> 外文学位 >S-nitrosylation of PDE5 contributes to the desensitization of the NO/cGMP signaling pathway.
【24h】

S-nitrosylation of PDE5 contributes to the desensitization of the NO/cGMP signaling pathway.

机译:PDE5的S-亚硝基化有助于NO / cGMP信号通路的脱敏。

获取原文
获取原文并翻译 | 示例

摘要

The "classical" mode of signaling by NO is via activation of soluble guanylyl cyclase (sGC) and accumulation of intracellular cGMP. Increasingly, signaling by NO is being shown to result from covalent addition of NO to Cys-thiols in proteins, a posttranslational protein modification termed S-Nitrosylation that can modify protein structure and function. Using a proteomic method for unbiased identification of S-nitrosoproteins, we discovered C220 in PDE5 (human) as a preferred site for NO addition. This cysteine resides within a recognized regulatory loop of PDE5 (in the GAFA domain) and is poised to modulate PDE5 activity. Importantly, PDE5 is the cGMP-binding cGMP-specific PDE that catalyses the rapid conversion of cGMP to 5'GMP. Binding of cGMP to the GAFA domain of PDE5 acts via an allosteric mechanism to enhance phosphodiesterase activity, providing for rapid termination of the NO/cGMP signaling pathway in many cells. We found that exposure of PDE5 to an NO-donor decreases catalytic activity and mutagenesis experiments confirmed that this effect requires S-nitrosylation of C220. PDE5 activity was previously shown to be upregulated by phosphorylation of S102 (human)---although this effect on catalysis is modest, phosphorylation was inferred to be responsible for physiological desensitization of the NO/cGMP pathway. Results of activity studies of phosphorylated PDE5 and C220/S102 mutants revealed that C220 may play a key role in the activity of phosphorylated PDE5 and that phosphorylation and nitrosylation act in concert to synergistically accelerate PDE5 desensitization and thereby shape cGMP signaling. Indeed, using an engineered cell system that reconstitutes the NO/cGMP/PDE5 signaling pathway, we demonstrate that S-nitrosylation and phosphorylation are required for desensitization of the NO/cGMP signaling pathway. Thus, in addition to NO activating the cGMP/PDE5 signaling pathway by nitrosylation of heme-iron in sGC, NO also promotes desensitization of the pathway through S-nitrosylation of C220 in PDE5. Activation of the cGMP/PDE5 pathway by NO and regulation by S-nitrosylation reveals NO to have an even tighter control on this pathway than previously appreciated and expands our understanding of the molecular mechanisms for desensitization of cGMP signaling in blood vessels and the brain.
机译:NO的“经典”信号传导方式是通过可溶性鸟苷酸环化酶(sGC)的激活和细胞内cGMP的积累。越来越多地显示NO信号是由NO共价添加到蛋白质的Cys-硫醇中引起的,翻译后蛋白质修饰称为S-亚硝基化,可以修饰蛋白质的结构和功能。使用蛋白质组学方法无偏鉴定S-亚硝基蛋白,我们在PDE5(人类)中发现C220作为添加NO的优选位点。该半胱氨酸位于公认的PDE5调节环内(在GAFA结构域中),并准备调节PD​​E5活性。重要的是,PDE5是结合cGMP的cGMP特异性PDE,可催化cGMP迅速转化为5'GMP。 cGMP与PDE5的GAFA结构域的结合通过变构机制起作用,以增强磷酸二酯酶活性,从而在许多细胞中迅速终止NO / cGMP信号传导途径。我们发现,将PDE5暴露于NO供体会降低催化活性,诱变实验证实,这种作用需要C220的S-亚硝基化。先前显示PDE5活性通过S102(人类)的磷酸化而上调-尽管这种对催化的作用是适度的,但推断磷酸化是NO / cGMP途径的生理脱敏的原因。磷酸化PDE5和C220 / S102突变体的活性研究结果表明,C220可能在磷酸化PDE5的活性中起关键作用,并且磷酸化和亚硝基化协同作用,协同促进PDE5脱敏,从而形成cGMP信号传导。确实,使用重组NO / cGMP / PDE5信号通路的工程细胞系统,我们证明S /亚硝基化和磷酸化是NO / cGMP信号通路脱敏所必需的。因此,除了NO通过sGC中的血红素铁亚硝化激活cGMP / PDE5信号传导途径外,NO还通过PDE5中C220的S-亚硝化作用促进途径的脱敏。通过NO激活cGMP / PDE5途径和通过S-亚硝基化进行调控,揭示了NO对这种途径的控制比以前认识到的还要严格,并且扩展了我们对血管和大脑中cGMP信号脱敏的分子机制的理解。

著录项

  • 作者

    Garceau, Marybeth Carrie.;

  • 作者单位

    Weill Medical College of Cornell University.;

  • 授予单位 Weill Medical College of Cornell University.;
  • 学科 Biology Molecular.;Health Sciences Pharmacology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 131 p.
  • 总页数 131
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号