首页> 外文学位 >Transport through graphene nanoconstrictions.
【24h】

Transport through graphene nanoconstrictions.

机译:通过石墨烯纳米收缩物运输。

获取原文
获取原文并翻译 | 示例

摘要

Graphene is a recently-discovered material with remarkable physical properties, including high mechanical strength and thermal conductivity and the highest known room-temperature mobilities of any material. These properties make graphene an attractive candidate for next-generation high-frequency transistors, but extended sheets of graphene also display a non-zero minimum conductivity, making it impossible to fabricate transistors with high on-off ratios out of extended graphene sheets. However, the long narrow nanostructures known as graphene nanoribbons offer the possibility of high on-off ratios when used as transistors. Their properties were initially explained in terms of quantum confinement. We have fabricated and measured the transport properties of graphene nanoribbons of a variety of lengths, ranging from micron scales to very short constrictions tens of nanometers in length. We find that nanoribbons and constrictions of all lengths display transport properties consistent with the formation of quantum dots throughout the length of the ribbon. In very short constrictions, we measure transport consistent with the presence of only one or two quantum dots, with strong coupling to the bulk graphene leads. We present a model for formation of quantum dots in our constrictions due to background potential fluctuations in the presence of a confinement gap. Annealing experiments allow us to vary the density and arrangement of impurities in the vicinity of our ribbons; we find that annealing changes certain transport properties systematically in a manner consistent with our disorder-nucleated quantum dot model of transport.
机译:石墨烯是一种新近发现的材料,具有出色的物理性能,包括高机械强度和导热性以及任何材料中已知的最高室温迁移率。这些特性使石墨烯成为下一代高频晶体管的有吸引力的候选者,但是石墨烯的延伸片材也显示出非零的最小电导率,从而使得不可能从延伸的石墨烯片材中制造出具有高开/关比的晶体管。然而,当用作晶体管时,称为石墨烯纳米带的长而窄的纳米结构提供了高开关比的可能性。最初是根据量子约束来解释其性质的。我们已经制造并测量了各种长度的石墨烯纳米带的传输性能,这些长度范围从微米级到很短的收缩长度(数十纳米)。我们发现,所有长度的纳米带和缩颈都显示出与整个碳带长度范围内的量子点形成一致的传输特性。在非常短的压缩条件下,我们测量的传输与仅存在一个或两个量子点一致,并且与整体石墨烯引线具有强耦合性。由于存在限制间隙,由于背景电势的波动,我们提出了在颈缩中形成量子点的模型。退火实验使我们能够改变碳带附近杂质的密度和排列;我们发现退火以与我们的无序核量子点运输模型相一致的方式系统地改变了某些运输性质。

著录项

  • 作者

    Todd, Kathryn.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 174 p.
  • 总页数 174
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号