首页> 外文学位 >Regulation of glutamate receptor transcript abundance during embryonic and larval development.
【24h】

Regulation of glutamate receptor transcript abundance during embryonic and larval development.

机译:胚胎和幼虫发育过程中谷氨酸受体转录物丰度的调节。

获取原文
获取原文并翻译 | 示例

摘要

Glutamate receptors are critical for the proper function of the central nervous system, as they mediate the majority of fast excitatory neurotransmission. Critical functions of the CNS include, but are not limited to, sensory and motor processing, and learning and memory formation. In the mammalian central nervous system, glutamate is the primary excitatory neurotransmitter; it is also found to be the excitatory neurotransmitter utilized at the Drosophila neuromuscular junction (Schuster et al., 1991). This similarity allows researchers to employ Drosophila as a powerful model system for which to study these essential receptors. The body wall muscles on which these glutamatergic synapses are found are also relatively simple, easily accessible and well defined to facilitate study (Anderson et al., 1988; Halpern et al., 1991; Johansen et al., 1989). The ability to create transgenic lines, deletion mutants and knock down genes using RNA interference through the use of the UAS/Ga14 system has also proven to be an essential tool in this study (Fjose et al., 2001; Roman, 2004).;The ionotropic glutamate receptors are the primary mediators of excitatory neurotransmission in the central nervous system (Bogdanik et al., 2004). Ionotropic glutamate receptors are a well-characterized category of ligand-gated ion channels. There are three known subtypes of ionotropic glutamate receptors, AMPA, kainate, and the NMDA receptors. The primary excitatory receptors at the mammalian brain are either the AMPA or kainite subtype, the kainate subtype are also the primary receptors found at the Drosophila NMJ.;The Drosophila ionotropic glutamate receptors found at the NMJ are proposed to be heteromeric tetramer complexes formed from five different glutamate receptor subunits, GluRIIA, GluRIIB, GluRIIC (formerly GluRIII), GluRIID and GluRIIE (DiAntonio et al., 1999; Featherstone et al., 2005; Marrus et al., 2004; Petersen et al., 1997b). These receptors are either A-type or B-type. A-type receptors are composed of GluRIIA, GluRIIC, GluRIID, and GluRIIE, while B-type receptors are composed of GluRIIB, GluRIIC, GluRIID, and GluRIIE. These two receptor types possess differing properties and currents, and localization patterns within Drosophila (Chen et al., 2005; Davis et al., 1998; DiAntonio et al., 1999; Marrus et al., 2004; Pawlu et al., 2004).;Here I look at how Drosophila transcript abundance of the A and B-type subunits is affected during embryonic development and how a specific event, innervation, during embryonic development affects this abundance. After transcript production occurs, I investigate a method of post-transcriptional regulation of these A and B-type transcripts. I explore the regulation of these glutamate receptor subunit transcripts by microRNAs, with microRNA regulation being a possible method to modulate receptor subtype composition at the synapse through microRNA mediated transcript degradation.
机译:谷氨酸受体对于中枢神经系统的正常功能至关重要,因为它们介导了大多数快速兴奋性神经传递。 CNS的关键功能包括但不限于感觉和运动处理以及学习和记忆形成。在哺乳动物的中枢神经系统中,谷氨酸是主要的兴奋性神经递质。它也被发现是果蝇神经肌肉连接处使用的兴奋性神经递质(Schuster等,1991)。这种相似性使研究人员能够将果蝇用作研究这些必需受体的强大模型系统。在其上发现这些谷氨酸能突触的体壁肌肉也相对简单,易于接近且定义明确,以利于研究(Anderson等,1988; Halpern等,1991; Johansen等,1989)。通过使用UAS / Ga14系统利用RNA干扰产生转基因品系,缺失突变体和敲除基因的能力也被证明是这项研究的重要工具(Fjose等,2001; Roman,2004)。离子型谷氨酸受体是中枢神经系统中兴奋性神经传递的主要介质(Bogdanik等,2004)。离子型谷氨酸受体是配体门控离子通道的一个很好表征的类别。离子型谷氨酸受体有三种已知的亚型,AMPA,海藻酸酯和NMDA受体。哺乳动物大脑中的主要兴奋性受体是AMPA或kainite亚型,海藻酸盐亚型也是在果蝇NMJ中发现的主要受体。在NMJ中发现的果蝇离子型谷氨酸受体是由五种形成的异源四聚体复合物。不同的谷氨酸受体亚基,GluRIIA,GluRIIB,GluRIIC(以前称为GluRIII),GluRIID和GluRIIE(DiAntonio等人,1999; Featherstone等人,2005; Marrus等人,2004; Petersen等人,1997b)。这些受体是A型或B型。 A型受体由GluRIIA,GluRIIC,GluRIID和GluRIIE组成,而B型受体由GluRIIB,GluRIIC,GluRIID和GluRIIE组成。这两种受体类型具有不同的特性和电流,以及在果蝇内的定位模式(Chen等,2005; Davis等,1998; DiAntonio等,1999; Marrus等,2004; Pawlu等,2004 );;在这里,我了解了在胚胎发育过程中A和B型亚基的果蝇转录本丰度如何受到影响,以及胚胎发育过程中的特定事件神经支配如何影响这种丰度。产生转录本后,我研究了这些A和B型转录本的转录后调控方法。我探索了通过microRNA对这些谷氨酸受体亚基转录物的调控,其中microRNA调控是通过microRNA介导的转录物降解来调节突触处受体亚型组成的一种可能方法。

著录项

  • 作者

    Karr, Julie.;

  • 作者单位

    University of Illinois at Chicago.;

  • 授予单位 University of Illinois at Chicago.;
  • 学科 Biology Neuroscience.;Biology Cell.;Biology Evolution and Development.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 136 p.
  • 总页数 136
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 遥感技术 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号