首页> 外文学位 >Electron beam induced deposition: A surface science approach.
【24h】

Electron beam induced deposition: A surface science approach.

机译:电子束诱导沉积:表面科学方法。

获取原文
获取原文并翻译 | 示例

摘要

It has become increasingly difficult to adapt current technologies of integrated circuit nanofabrication to ever increasing demands for smaller deposition resolution. Immersion lithography, a method of photolithography, is the current generation of large scale production technology for the fabrication of these devices; though it is theorized that photolithography is simply unable to generate structures smaller than 16 nanometers. Fortunately, electron beam induced deposition (EBID) of volatile precursors has emerged as an effective and versatile method for creating two and three-dimensional nanostructures. However, the range of applications for materials deposited from organometallic precursors is often limited by the unacceptably high level of organic contamination present. To improve control over the deposition process, it is necessary to better understand the fundamental molecular level processes associated with EBID. This doctoral thesis addresses the need for a detailed investigation of the electron stimulated decomposition process by using traditional surface chemistry techniques to probe the EBID process in situ and in real-time.;Contrary to most EBID studies, the molecular precursors in this thesis have been molecularly adsorbed onto inert surfaces under ultra high vacuum conditions. These molecular films were then irradiated with low energy electrons (40-3000 eV) and probed using surface chemistry techniques. Results from these studies revealed new ways of calculating the total reaction cross-sections for molecules undergoing electron induced decomposition at surfaces. Two organometallic precursors, trimethyl(methylcyclopentadienyl) platinum(IV) and dimethyl-(acetylacetonate) gold(III), were found to decompose as a result of an electron initiated bond cleavage event between the metal center and a methyl ligand. These studies provide new insight into the role of the organometallic precursor ligand architecture during the EBID process. In addition, post-deposition purification using atomic hydrogen and atomic oxygen was found to successfully remove 100% of organic contamination from EBID deposited films.;Growth of amorphous carbon-nitride films from 1,2-diaminopropane using EBID was also investigated. It was found that the electron stimulated dehydrogenation of the organic precursor induces formation of nitrile bonds and that the stoichiometry of the precursor is preserved in the product. Systematic variation in the incident electron energy revealed that the deposition proceeds with maximum efficiency when exposed to 200 eV electrons, a similar energy dependence was found for the electron simulated decomposition of organometallic precursors.
机译:使集成电路纳米制造的当前技术适应对越来越小的沉积分辨率的日益增长的需求已经变得越来越困难。浸没式光刻是一种光刻方法,是用于制造这些器件的当前大规模生产技术。尽管从理论上讲,光刻根本无法产生小于16纳米的结构。幸运的是,挥发性前体的电子束诱导沉积(EBID)已经成为创建二维和三维纳米结构的有效且通用的方法。然而,由有机金属前体沉积的材料的应用范围通常受到存在的不可接受的高水平有机污染物的限制。为了改善对沉积过程的控制,有必要更好地了解与EBID相关的基本分子水平过程。该博士论文致力于通过使用传统的表面化学技术对电子刺激的分解过程进行详细研究的需要,以现场和实时探测EBID过程。与大多数EBID研究相反,本论文中的分子前体是在超高真空条件下分子吸附在惰性表面上。然后用低能电子(40-3000 eV)照射这些分子膜,并使用表面化学技术进行探测。这些研究的结果揭示了计算表面上电子诱导分解的分子的总反应截面的新方法。由于金属中心和甲基配体之间电子引发的键裂解事件,发现了两个有机金属前体三甲基(甲基环戊二烯基)铂(IV)和二甲基(乙酰丙酮)金(III)分解。这些研究为有机金属前体配体结构在EBID过程中的作用提供了新的见解。此外,发现使用原子氢和原子氧的沉积后纯化可成功去除EBID沉积膜中的100%有机污染物。还研究了使用EBID从1,2-二氨基丙烷中生长非晶碳氮化物膜的方法。已经发现,有机前驱体的电子激发的脱氢诱导了腈键的形成,并且前驱体的化学计量保持在产物中。入射电子能量的系统变化表明,当暴露于200 eV电子时,沉积以最大效率进行,发现有机金属前体的电子模拟分解具有相似的能量依赖性。

著录项

  • 作者

    Wnuk, Joshua.;

  • 作者单位

    The Johns Hopkins University.;

  • 授予单位 The Johns Hopkins University.;
  • 学科 Chemistry Physical.;Engineering Materials Science.;Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 223 p.
  • 总页数 223
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号