首页> 外文学位 >Adaptive array signal processing using the concentric ring array and the spherical array.
【24h】

Adaptive array signal processing using the concentric ring array and the spherical array.

机译:使用同心环形阵列和球形阵列的自适应阵列信号处理。

获取原文
获取原文并翻译 | 示例

摘要

Array signal processing is an interesting field that uses sensors placed in particular geometric arrangements for the detection and processing of signals. One of the most significant features is that the array is able to perform spatial discrimination besides the well known frequency filtering approach. The spatial filtering process is referred to as beamforming. The objective of beamforming is to enhance a desired signal meanwhile canceling interferences coming from other directions and suppressing the background noise. The arrangement of the sensing elements is essential in determining the performance of source localization and beamforming.;Among different geometry arrangements, the ring array is preferable for 3-D beamforming because provides full azimuth coverage and reduces the cone of uncertainty present in the uniform linear array (ULA) to just two direction of arrivals (DOAs) while maintaining an azimuthal uniform beampattern. The concentric ring array (CRA) has additional flexibility in adaptive beamforming. Furthermore, it can utilize nested array design and achieves frequency invariant characteristics. The spherical array (SA) has all the advantages of the ring array plus maintaining a uniform beampattern in all directions and eliminating the DOA uncertainty.;This thesis introduces new methods for the partial adaptive beamforming using CRA and SA for acoustic signals on a partially known interference environment. This work is originally based on the element space partial adaptive beamformers of D. Abraham and H. Cox. More recently, Y. Li employs a CRA where the whole array is decomposed into sub-arrays that perform element space individual beamforming using intra-ring weights. Then, the sub-array outputs are combined together with adaptive inter-ring weights to form the overall beamformer output.;The first contribution of this thesis resides in novel methods to choose the intra-ring and inter-ring weights. They are designed to take advantage of the prior knowledge about the characteristics of some of the interferences present in the acoustic field without reducing the beamformer's degrees of freedom (DOFs). The appropriate amount of prior knowledge included in the design of the intra-ring weights is in the form of a fixed penalty factor value. The intra-ring weights are designed to cancel the interferences with prior knowledge. The inter-ring weights are adaptively obtained to cancel the unknown interferences.;The second contribution of this thesis lies on the optimization of the penalty factor that is automatically obtained to minimize the amount of residual error in the beamformer output at any time.;The third contribution of this thesis is the idea of combining the element space along with the beamspace beamforming, where the prior knowledge is added in form of beamspace beams pointing towards the interferences with known characteristics, meanwhile keeping the sub-arrays that use element space beamforming to handle the interferences with unknown characteristics. The combined beamspace element space (CBSES) is found to be robust against interference uncertainties and presents a consistent behavior for different scenarios.;The fourth contribution extends the CRA element space partial adaptive beamformer to the SA. We analyze several sensor arrangements and we suggest two novel sensor arrangements for beamforming with the SA that uses parallel ring sub-arrays. The partial adaptive beamformer design achieves huge computational savings, faster convergence and similar performance than that of the fully adaptive beamformer. Finally, the design of a broadband beamformer using nesting on an SA is also presented. Array nesting will increase the frequency range of the array and will reuse elements from different nests. Thus, reducing the total number of sensor elements needed.;The last contribution of this thesis is the implementation of two robust algorithms against the SA sensor misplacement. The proposed algorithms use a better distortionless constraint that includes the sensor position errors, contrary to the constraint used in the diagonal loading robust method, which does not include the errors.
机译:阵列信号处理是一个有趣的领域,它使用放置在特定几何结构中的传感器来检测和处理信号。最重要的特征之一是,除了众所周知的频率滤波方法外,该阵列还能够执行空间判别。空间滤波过程称为波束成形。波束成形的目的是增强所需信号,同时消除来自其他方向的干扰并抑制背景噪声。传感元件的布置对于确定源定位和波束形成的性能至关重要。在不同的几何布置中,环形阵列更适合于3-D波束形成,因为它提供了完整的方位角覆盖范围并减少了均匀线性系统中存在的不确定圆锥阵列(ULA)只能到达两个方向(DOA),同时保持方位角均匀的波束图。同心环阵列(CRA)在自适应波束形成方面具有额外的灵活性。此外,它可以利用嵌套阵列设计并实现频率不变特性。球面阵列(SA)具有环形阵列的所有优点,并且在各个方向上都保持均匀的波束方向图并消除了DOA不确定性。;本文介绍了使用CRA和SA对部分已知的声信号进行部分自适应波束形成的新方法干扰环境。这项工作最初基于D. Abraham和H. Cox的元素空间局部自适应波束形成器。最近,Y。Li采用了CRA,其中整个阵列被分解为子阵列,这些子阵列使用环内权重执行元素空间单独的波束成形。然后,将子阵列输出与自适应环间权重组合在一起,以形成整个波束成形器输出。本论文的第一点贡献在于选择环内和环间权重的新颖方法。它们的设计目的是利用有关声场中某些干扰特性的现有知识,而不会降低波束形成器的自由度(DOF)。环内权重的设计中包括的适当的先验知识的数量为固定惩罚因子值的形式。环内权重旨在消除具有先验知识的干扰。自适应地获得环间权重以消除未知干扰。本论文的第二个贡献在于优化罚因子,该罚因子是自动获得的,以使波束形成器在任何时候的输出中的残留误差量最小。本文的第三点贡献是将元素空间与波束空间波束形成结合在一起的想法,其中以指向具有已知特征的干扰的波束空间波束的形式添加先验知识,同时保留使用元素空间波束形成的子阵列处理特征未知的干扰。组合波束空间元素空间(CBSES)被发现具有抗干扰不确定性的鲁棒性,并在不同情况下表现出一致的行为。第四点,将CRA元素空间部分自适应波束形成器扩展到了SA。我们分析了几种传感器布置,并提出了两种新颖的传感器布置,用于使用平行环子阵列的SA进行波束成形。与完全自适应波束形成器相比,部分自适应波束形成器设计可实现巨大的计算量节省,更快的收敛速度和相似的性能。最后,还介绍了在SA上使用嵌套的宽带波束形成器的设计。数组嵌套将增加数组的频率范围,并将重用来自不同嵌套的元素。因此,减少了所需的传感器元件总数。本论文的最后一项贡献是针对SA传感器错位的两种鲁棒算法的实现。所提出的算法使用更好的无失真约束,该约束包括传感器位置误差,这与在对角线加载鲁棒方法中使用的不包含误差的约束相反。

著录项

  • 作者

    Vicente, Luis M.;

  • 作者单位

    University of Missouri - Columbia.;

  • 授予单位 University of Missouri - Columbia.;
  • 学科 Engineering Electronics and Electrical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 227 p.
  • 总页数 227
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号