首页> 外文学位 >Hydrodynamic Simulations of Ejecta Production From Shocked Metallic Surfaces
【24h】

Hydrodynamic Simulations of Ejecta Production From Shocked Metallic Surfaces

机译:冲击金属表面产生弹射体的流体动力学模拟

获取原文
获取原文并翻译 | 示例

摘要

The phenomenon of mass ejection into vacuum from a shocked metallic free surfaces can have a deleterious effect on the implosion phase of the Inertial Confinement Fusion (ICF) process. Often, the ejecta take the form of a cloud of particles that are the result of microjetting sourced from imperfections on the metallic free surface. Significant progress has been achieved in the understanding of ejecta dynamics by treating the process as a limiting case of the baroclinically-driven Richtmyer-Meshkov Instability (RMI). This conceptual picture is complicated by several practical considerations including breakup of spikes due to surface tension and yield strength of the metal. Thus, the problem involves a wide range of physical phenomena, occurring often under extreme conditions of material behavior.;We describe an approach in which continuum simulations using ideal gases can be used to capture key aspects of ejecta growth associated with the RMI. The approach exploits the analogy between the Rankine-Hugoniot jump conditions for ideal gases and the linear relationship between the shock velocity and particle velocity governing shocked metals. Such simulations with Upsilon-law fluids have been successful in accurately predicting the velocity and mass of ejecta for different shapes, and in excellent agreement with experiments. We use the astrophysical FLASH code, developed at the University of Chicago to model this problem. Based on insights from our simulations, we suggest a modified expression for ejecta velocities that is valid for large initial perturbation amplitudes. The expression for velocities is extended to ejecta originating from cavities with any arbitrary shape. The simulations are also used to validate a recently proposed source model for ejecta that predicts the ejected mass per unit area for sinusoidal and non-standard shapes. Such simulations and theoretical models play an important role in the design of target experiment campaigns.
机译:从受冲击的金属自由表面大量喷射到真空中的现象会对惯性约束聚变(ICF)过程的内爆阶段产生有害影响。通常,喷射物采取颗粒云的形式,这是由于金属自由表面上的缺陷导致的微喷射而产生的。通过将该过程视为斜压驱动的Richtmyer-Meshkov不稳定性(RMI)的极限情况,在理解射血动力学方面已取得了重大进展。该概念图由于多种实际考虑而变得复杂,包括由于表面张力和金属的屈服强度而导致的尖峰破裂。因此,该问题涉及广泛的物理现象,通常在极端的材料行为条件下发生。我们描述了一种方法,在该方法中,使用理想气体进行连续谱模拟可用于捕获与RMI相关的喷射生长的关键方面。该方法利用了理想气体的兰金-休格尼奥跳变条件与控制冲击金属的冲击速度和粒子速度之间的线性关系之间的类比。用Upsilon-law流体进行的此类模拟已成功地准确预测了不同形状的喷射速度和质量,并且与实验非常吻合。我们使用在芝加哥大学开发的天体FLASH代码对这个问题进行建模。基于我们的模拟的见解,我们提出了一种针对喷射速度的修正表达式,该表达式对于较大的初始摄动幅度有效。速度的表达被扩展到由具有任意形状的空腔产生的喷射。该模拟还用于验证最近提出的喷射源模型,该模型可预测正弦和非标准形状的单位面积喷射质量。这些模拟和理论模型在目标实验活动的设计中起着重要作用。

著录项

  • 作者

    Karkhanis, Varad Abhimanyu.;

  • 作者单位

    The University of North Carolina at Charlotte.;

  • 授予单位 The University of North Carolina at Charlotte.;
  • 学科 Mechanical engineering.;Aerospace engineering.;Mechanics.
  • 学位 Ph.D.
  • 年度 2017
  • 页码 108 p.
  • 总页数 108
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号