首页> 外文学位 >Film cooling, heat transfer and aerodynamic measurements in a three stage research gas turbine.
【24h】

Film cooling, heat transfer and aerodynamic measurements in a three stage research gas turbine.

机译:三阶段研究型燃气轮机中的薄膜冷却,传热和空气动力学测量。

获取原文
获取原文并翻译 | 示例

摘要

The existing 3-stage turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University, is re-designed and newly installed to enable coolant gas injection on the first stage rotor platform to study the effects of rotation on film cooling and heat transfer. Pressure and temperature sensitive paint techniques are used to measure film cooling effectiveness and heat transfer on the rotor platform respectively. Experiments are conducted at three turbine rotational speeds namely, 2400rpm, 2550rpm and 3000rpm. Interstage aerodynamic measurements with miniature five hole probes are also acquired at these speeds. The aerodynamic data characterizes the flow along the first stage rotor exit, second stage stator exit and second stage rotor exit. For each rotor speed, film cooling effectiveness is determined on the first stage rotor platform for upstream stator-rotor gap ejection, downstream discrete hole ejection and a combination of upstream gap and downstream hole ejection. Upstream coolant ejection experiments are conducted for coolant to mainstream mass flow ratios of MFR=0.5%, 1.0%, 1.5% and 2.0% and downstream discrete hole injection tests corresponding to average hole blowing ratios of M = 0.5, 0.75, 1.0, 1.25, 1.5, 1.75 and 2.0 for each turbine speed. To provide a complete picture of hub cooling under rotating conditions, experiments with simultaneous injection of coolant gas through upstream and downstream injection are conducted for an of MFR=1% and Mholes=0.75, 1.0 and 1.25 for the three turbine speeds. Heat transfer coefficients are determined on the rotor platform for similar upstream and downstream coolant injection. Rotation is found to significantly affect the distribution of coolant on the platform. The measured effectiveness magnitudes are lower than that obtained with numerical simulations. Coolant streams from both upstream and downstream injection orient themselves towards the blade suction side. Passage vortex cuts-off the coolant film for the lower MFR for upstream injection. As the MFR increases, the passage vortex effects are diminished. Effectiveness was maximum when Mholes was closer to one as the coolant ejection velocity is approximately equal to the mainstream relative velocity for this blowing ratio. Heat transfer coefficient and film cooling effectiveness increase with increasing rotational speed for upstream rotor stator gap injection while for downstream hole injection the maximum effectiveness and heat transfer coefficients occur at the reference speed of 2550rpm.
机译:德克萨斯A&M大学涡轮机械性能和流动研究实验室(TPFL)的现有三级涡轮研究设施经过重新设计和新安装,可在第一级转子平台上注入冷却剂气体,以研究旋转对薄膜的影响冷却和传热。压力和温度敏感涂料技术分别用于测量薄膜冷却效果和在转子平台上的热传递。实验以三种涡轮转速进行,即2400rpm,2550rpm和3000rpm。在这些速度下,还可以使用微型五孔探头进行级间空气动力学测量。空气动力学数据表征了沿第一级转子出口,第二级定子出口和第二级转子出口的流动。对于每个转子速度,在第一级转子平台上确定膜冷却效率,以用于上游定子-转子间隙喷射,下游离散孔喷射以及上游间隙和下游孔喷射的组合。进行上游冷却剂喷射实验,以使冷却剂与主流质量流率之比MFR分别为0.5%,1.0%,1.5%和2.0%,并进行下游离散注气试验,其对应的平均鼓风比为M = 0.5、0.75、1.0、1.25,每个涡轮转速分别为1.5、1.75和2.0。为了提供旋转条件下轮毂冷却的完整情况,对于三个涡轮速度,进行了通过上游和下游喷射同时喷射冷却剂气体的实验,MFR = 1%,Mholes = 0.75、1.0和1.25。对于相似的上游和下游冷却剂注入,在转子平台上确定传热系数。发现旋转会严重影响平台上冷却液的分布。测得的有效性幅度低于通过数值模拟获得的有效性幅度。来自上游和下游喷射的冷却剂流将自身朝向叶片吸入侧。通道涡流切断了冷却剂膜,从而降低了上游喷射的MFR。随着MFR的增加,通道涡流效应减弱。当Mholes接近于1时,效率最高,因为冷却液的喷射速度大约等于该吹风比的主流相对速度。上游转子定子间隙注入时,传热系数和薄膜冷却效率随转速的增加而增加,而下游孔注入时,最大效率和传热系数以参考速度2550rpm出现。

著录项

  • 作者

    Suryanarayanan, Arun.;

  • 作者单位

    Texas A&M University.;

  • 授予单位 Texas A&M University.;
  • 学科 Engineering Mechanical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 190 p.
  • 总页数 190
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号