首页> 外文学位 >Nanoconfined water: Molecular dynamic simulations of cavities, model ice-pores, and modified carbon nanotube pores with applications related to ratchets and ion pumps.
【24h】

Nanoconfined water: Molecular dynamic simulations of cavities, model ice-pores, and modified carbon nanotube pores with applications related to ratchets and ion pumps.

机译:纳米受限水:腔,模型冰孔和修饰的碳纳米管孔的分子动力学模拟,以及与棘轮和离子泵相关的应用。

获取原文
获取原文并翻译 | 示例

摘要

This thesis is written from a physical and theoretical chemistry perspective. The intent of this report is to simulate, analyze, and characterize water in confined nanometer scale architectures. I seek to understand the cross over between bulk solutions and nanometer confined solutions from a molecular dynamics perspective. The nature of water and solutions in confined environments (on the scale of nanometers), unlike bulk water found in lakes, rivers, the ocean, or a pot of coffee, behaves differently. This is in part due to the rearrangement of the hydrogen bond network around spatial constraints. Other aspects of water's unique characteristics at these scales are due to hydrophobic or hydrophilic surface interactions.;Molecular dynamic simulations in this work are used to examine a classical mechanical treatment of this behavior. I first examine how water in confined ice-like nanometer spaces is influenced by the boundary This work shows hydrogen bond lifetimes lengthen when water is confined by hydrophilic boundaries. Model ice nanopores are used to study water flux and the importance of electrostatic effects therein. Both of these results are used as a gauge to determine the approximate length and charge necessary to modify the dynamics of water. Further work attempts to take advantage of these properties in order to address rectification of both water and salt solutions in various sized pores. I show salt exclusion for nanopore diameter on the order of 1 nm. Conclusions about the ion rectification properties of the pores studied are discussed.
机译:本文是从物理和理论化学的观点出发撰写的。本报告的目的是模拟,分析和表征受限纳米级架构中的水。我试图从分子动力学的角度理解本体溶液和纳米受限溶液之间的交叉。在密闭环境中(纳米级)的水和溶液的性质与在湖泊,河流,海洋或一壶咖啡中发现的散装水不同,其行为也有所不同。这部分是由于氢键网络围绕空间约束而重排。在这些尺度上,水的独特特性的其他方面是由于疏水或亲水表面的相互作用所引起的。这项工作中的分子动力学模拟用于检验这种行为的经典机械处理。我首先研究受限的冰状纳米空间中的水如何受边界影响。这项工作表明,当水受亲水性边界约束时,氢键的寿命会延长。模型冰纳米孔用于研究水通量及其中静电效应的重要性。这两个结果均用作量度,以确定改变水动力所需的近似长度和电荷。进一步的工作试图利用这些特性,以解决各种尺寸的孔中水和盐溶液的精馏问题。我显示纳米孔直径的盐排阻约为1 nm。讨论了有关所研究的孔的离子整流性能的结论。

著录项

  • 作者

    Goldsmith, Jacob Eli.;

  • 作者单位

    University of California, Irvine.;

  • 授予单位 University of California, Irvine.;
  • 学科 Chemistry Molecular.;Chemistry Physical.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 81 p.
  • 总页数 81
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:38:12

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号