首页> 外文学位 >Transcriptional programming of spinal motor neurons from stem cells.
【24h】

Transcriptional programming of spinal motor neurons from stem cells.

机译:来自干细胞的脊髓运动神经元的转录编程。

获取原文
获取原文并翻译 | 示例

摘要

Motor neurons are the cholinergic cells of the spinal ventral horns responsible for mediating the central nervous system's control of voluntary muscle movement. Selective loss of these cells is a hallmark of the lethal diseases such amyotrophic lateral sclerosis and spinal muscular atrophy. As there are no effective treatments for these devastating disorders, studying the unique biology of these important cells has been a focus of intense research. Inhibiting these pursuits has been the inability to generate motor neurons efficiently and in large number in vitro. Furthermore, all motor neurons generated to date are typically of a single subtype and therefore fail to represent the diverse array of motor neuron types required for vertebrate locomotion. The aim of this dissertation is to create robust strategies for the derivation of motor neurons with subtype specificity at high efficiency in vitro. We have therefore undertaken a transcription factor mediated approach to direct stem cells to motor neuron fates at high efficiency with subtype specificity in vitro. This work is based on a central hypothesis stating that neuronal cell fate can be specified from stem cells through the rational expression of fate specifying transcription factors, i.e. 'transcriptional programming'.;Stem cells at various stages of commitment can be derived from different tissues and share the ability to self-renew and differentiate into multiple cell types. Embryonic stem-and induced pluripotent stem- (iPS) cells retain the potential to generate all cell types from the three germ layers endoderm, mesoderm and ectoderm. In contrast, adult-derived neural stem cells (NSCs) have a more limited differentiation capacity and differentiate into only neurons, astrocytes, and oligodendrocytes. It remains unclear whether they remain competent to generate specific neuronal subtypes. Here, we investigated the potential of programming embryonic stem cells to a motor neuron fate. We also investigated the ability of adult NSCs derived from either brain or spinal cord regions to be programmed to a cholinergic spinal motor neuron phenotype. We found that an embryonic transcription factor code---Isl1, Lhx3, and Ngn2---could instruct the differentiation of ES cells and adult NSCs from multiple origins into functional motor neurons. This work highlights the potential of directly programming stem cells to a defined phenotype as it is more efficient and generates motor neurons from cell populations typically refractory to motor neuron development by canonical approaches.;We also demonstrate the ectopic expression of the atypical zinc finger protein, Nolz1, directs ES derived motor neurons to a limb innervating lateral motor column (LMC) fate. Motor neurons transduced with Nolz1 express LMC character markers such as Lhx1 and Raldh2. Furthermore, LMC-induced motor neurons extend projections to limb muscles, and possess electrophysiological properties characteristic of LMC motor neurons. Together these data present a novel direct programming approach for the generation of an LMC motor neuron subtype from mES cells, which will greatly aid in the analysis of those motor neurons more susceptible to neurodegenerative disease.
机译:运动神经元是脊髓腹角的胆碱能细胞,负责介导中枢神经系统对自愿性肌肉运动的控制。这些细胞的选择性损失是致死性疾病的特征,如肌萎缩性侧索硬化症和脊髓性肌萎缩症。由于没有针对这些破坏性疾病的有效疗法,因此研究这些重要细胞的独特生物学一直是研究的重点。抑制这些追求的原因是无法在体外有效和大量产生运动神经元。此外,迄今为止产生的所有运动神经元通常是单个亚型,因此不能代表脊椎动物运动所需的各种运动神经元类型。本文的目的是为在体外高效率地衍生具有亚型特异性的运动神经元创造鲁棒的策略。因此,我们采取了转录因子介导的方法,以高效率和体外亚型特异性将干细胞定向到运动神经元命运。这项工作基于一个中心假说,该假说表明神经元细胞的命运可以通过命运的合理表达来指定干细胞的命运,这些命运指定了转录因子,即“转录程序”。在承诺的各个阶段,干细胞可以来自不同的组织和具有自我更新和分化为多种细胞类型的能力。胚胎干和诱导多能干(iPS)细胞保留了从内胚层,中胚层和外胚层三个胚层中产生所有细胞类型的潜力。相反,成人来源的神经干细胞(NSC)具有更有限的分化能力,只能分化为神经元,星形胶质细胞和少突胶质细胞。尚不清楚它们是否仍然具有产生特定神经元亚型的能力。在这里,我们研究了将胚胎干细胞编程为运动神经元命运的潜力。我们还调查了来自大脑或脊髓区域的成年NSC被编程为胆碱能脊髓运动神经元表型的能力。我们发现,胚胎转录因子代码-Isl1,Lhx3和Ngn2--可以指导ES细胞和成年NSC从多个来源分化为功能性运动神经元。这项工作强调了将干细胞直接编程为定义的表型的潜力,因为它效率更高,并且可以通过规范方法从通常难于运动神经元发育的细胞群体中生成运动神经元。我们还证明了非典型锌指蛋白的异位表达, Nolz1,将ES衍生的运动神经元引导至支配肢体外侧运动柱(LMC)命运的肢体。用Nolz1转导的运动神经元表达LMC特征标记,例如Lhx1和Raldh2。此外,LMC诱导的运动神经元将投射延伸到四肢肌肉,并具有LMC运动神经元的电生理特性。这些数据一起提出了一种新的直接编程方法,用于从mES细胞生成LMC运动神经元亚型,这将大大有助于分析更易发生神经退行性疾病的那些运动神经元。

著录项

  • 作者

    Murtha, Matthew J., III.;

  • 作者单位

    The Ohio State University.;

  • 授予单位 The Ohio State University.;
  • 学科 Biology Cell.;Biology Neurobiology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 141 p.
  • 总页数 141
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号