首页> 外文学位 >Polyimide nanocomposites based on cubic zirconium tungstate.
【24h】

Polyimide nanocomposites based on cubic zirconium tungstate.

机译:基于立方钨酸锆的聚酰亚胺纳米复合材料。

获取原文
获取原文并翻译 | 示例

摘要

In this research, cubic zirconium tungstate (ZrW2O8) was used as a filler to reduce the CTE of polyimides (PI), and the effect of ZrW2O8 nanoparticles on the bulk polymer properties was studied. Polyimides are high performance polymers with exceptional thermal stability, and there is a need for PIs with low CTEs for high temperature applications. The nanofiller, cubic ZrW2O8, is well known for its isotropic negative thermal expansion (NTE) over a wide temperature range from -272.7 to 777°C.;The preparation of nanocomposites involved the synthesis of ZrW 2O8 nanofiller, engineering the polymer-filler interface using linker groups and optimization of processing strategies to prepare free-standing PI nanocomposite films. A hydrothermal method was used to synthesize ZrW 2O8 nanoparticles. Polyimide-ZrW2O8 interface interaction was enhanced by covalently bonding linker moieties to the surface of ZrW2O8 nanoparticles. Specifically, ZrW 2O8 nanoparticles were functionalized with two different linker groups: (1) a short aliphatic silane, and (2) low molecular weight PI. The surface functionalization was confirmed using X-ray photoelectron spectroscopy and thermal gravimetric analysis (TGA). Reprecipitation blending was used to prepare the freestanding PI-ZrW2O8 nanocomposite films with up to 15 volume% filler loading. SEM images showed the improvements in polymer-filler wetting behavior achieved using interface engineering. SEM images indicated that there was better filler dispersion in the PI matrix using reprecipitation blending, compared to the filler dispersion achieved in the nanocomposites prepared using conventional blending technique.;The structure-property relationships in PI-ZrW2O8 nanocomposites were investigated by studying the thermal degradation, glass transition, tensile and thermal expansion properties of the nanocomposites. The properties were studied as a function of filler loading and interface linker groups. Addition of ZrW2O8 nanoparticles did not alter the thermal degradation and glass transition temperatures of the base PI. The addition of ZrW2O8 nanoparticles increased the Young's modulus of the polymer, indicating the stiffening of polyimide matrix. The modulus showed a steady increase with increase in filler loading. The increase was higher for nanocomposites with engineered interface due to the efficient load transfer achieved through the presence of linker groups. The strain at yield and the tensile strength decreased with the addition of ZrW2O8. The experimental results for the moduli of nanocomposites were compared with moduli predicted using theoretical models. The results for the nanocomposites with unmodified ZrW2O8 followed Hashin-Shtrikman (H-S) lower bound, which showed the presence of mechanical interactions between the polymer and filler. The moduli for nanocomposites with engineered interface fell between the H-S bounds, demonstrating the stiffening of PI matrix through efficient load transfer.;The addition of ZrW2O8 reduced the in-plane CTE of the base PI at all loadings. The CTE of the nanocomposites decreased steadily with an increase in the filler loading. With the addition of 15 volume% APT-ZrW 2O8, the CTE of the base PI reduced from 64.3 +/- 1.3 ppm/°C to 51.9 +/- 0.9 ppm/°C. In other words, the CTE of the base PI was reduced by around 22% with the addition of ZrW2O 8 at 15 volume% loading. The CTE values were comparable for all samples at similar loadings irrespective of the interface groups. The experimental results for the CTEs of nanocomposites were compared with CTEs predicted using theoretical models. The data followed the Schapery upper bound, which was consistent with the results observed for the moduli data.;The effect of ZrW2O8 particle size on the bulk properties of the polyimide was also investigated. The CTE of composites with micron particles at 5 volume% was comparable to that obtained for nanocomposites at the same filler loading. But, there were significant differences in the mechanical strength of composites. PI composites with ZrW2O 8 micron particles were extremely brittle and readily crumbled at as low as 5 volume%, while composites with ZrW2O8 nanofiller had good mechanical strength up to 15 volume% filler loading.;The nanoparticles of ZrW2O8 exhibited autohydration under ambient conditions. Cubic ZrW2O8 nanoparticles continued to hydrate to the same extent even after incorporation into the polyimide matrix. Surface functionalization of ZrW2O8 with silane and PI oligomers did not alter the hydration behavior of ZrW 2O8. (Abstract shortened by UMI.)
机译:在这项研究中,使用立方钨酸锆(ZrW2O8)作为填充剂以降低聚酰亚胺(PI)的CTE,并研究了ZrW2O8纳米粒子对本体聚合物性能的影响。聚酰亚胺是具有出色的热稳定性的高性能聚合物,因此对于高温应用,需要具有低CTE的PI。立方纳米ZrW2O8纳米填料以其在-272.7至777°C的宽温度范围内的各向同性负热膨胀(NTE)而闻名。;纳米复合材料的制备涉及ZrW 2O8纳米填料的合成,工程化聚合物-填料界面使用连接基团和优化加工策略来制备独立的PI纳米复合材料薄膜。使用水热法合成ZrW 2O8纳米粒子。通过将接头部分共价键合到ZrW2O8纳米颗粒的表面,可以增强聚酰亚胺-ZrW2O8的界面相互作用。具体而言,ZrW 2O8纳米粒子被两个不同的连接基团官能化:(1)短脂肪族硅烷,和(2)低分子量PI。使用X射线光电子能谱和热重分析(TGA)确认了表面功能化。再沉淀共混用于制备独立的PI-ZrW2O8纳米复合材料薄膜,其中填充剂含量最高为15%。 SEM图像显示使用界面工程技术可以改善聚合物-填料的润湿行为。 SEM图像表明,与使用常规共混技术制备的纳米复合材料相比,通过再沉淀共混在PI基体中具有更好的填料分散性。;通过研究热降解研究PI-ZrW2O8纳米复合材料的结构-性能关系。 ,纳米复合材料的玻璃化转变,拉伸和热膨胀特性。研究了这些性质与填料填充量和界面连接基团的关系。 ZrW2O8纳米粒子的添加不会改变基础PI的热降解和玻璃化转变温度。 ZrW2O8纳米颗粒的添加增加了聚合物的杨氏模量,表明聚酰亚胺基质变硬。模量显示出随着填料载荷的增加而稳定增加。具有工程界面的纳米复合材料的增加幅度更大,这是由于通过存在连接基团而实现的有效负载转移。 ZrW2O8的加入降低了屈服应变和拉伸强度。将纳米复合材料的模量的实验结果与使用理论模型预测的模量进行了比较。具有未修饰的ZrW2O8的纳米复合材料的结果遵循Hashin-Shtrikman(H-S)的下限,这表明聚合物和填料之间存在机械相互作用。具有工程界面的纳米复合材料的模量落在H-S边界之间,表明PI基质通过有效的载荷传递而变硬。ZrW2O8的添加降低了所有载荷下基础PI的面内CTE。随着填料含量的增加,纳米复合材料的CTE稳定下降。加入15体积%的APT-ZrW 2O8,基础PI的CTE从64.3 +/- 1.3ppm /℃降低到51.9 +/- 0.9ppm /℃。换句话说,通过以15体积%的负载量添加ZrW2O 8,基本PI的CTE降低了约22%。不论界面组如何,所有样品在相似负载下的CTE值都是可比的。将纳米复合材料的CTE的实验结果与使用理论模型预测的CTE进行了比较。数据遵循Schapery上限,这与对模量数据观察到的结果一致。;还研究了ZrW2O8粒径对聚酰亚胺本体性能的影响。微米颗粒含量为5%(体积)的复合材料的CTE与相同填充量下纳米复合材料的CTE相当。但是,复合材料的机械强度存在显着差异。具有ZrW2O 8微米颗粒的PI复合材料非常脆,在低至5体积%时易碎裂,而具有ZrW2O8纳米填料的复合材料在高达15体积%的填充量下具有良好的机械强度。; ZrW2O8的纳米颗粒在环境条件下表现出自水化作用。立方ZrW2O8纳米粒子甚至在掺入聚酰亚胺基体后仍继续以相同程度水合。用硅烷和PI低聚物对ZrW2O8进行表面官能化处理不会改变ZrW 2O8的水合行为。 (摘要由UMI缩短。)

著录项

  • 作者单位

    The University of Toledo.;

  • 授予单位 The University of Toledo.;
  • 学科 Engineering Chemical.;Engineering Materials Science.;Plastics Technology.
  • 学位 Ph.D.
  • 年度 2009
  • 页码 192 p.
  • 总页数 192
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号